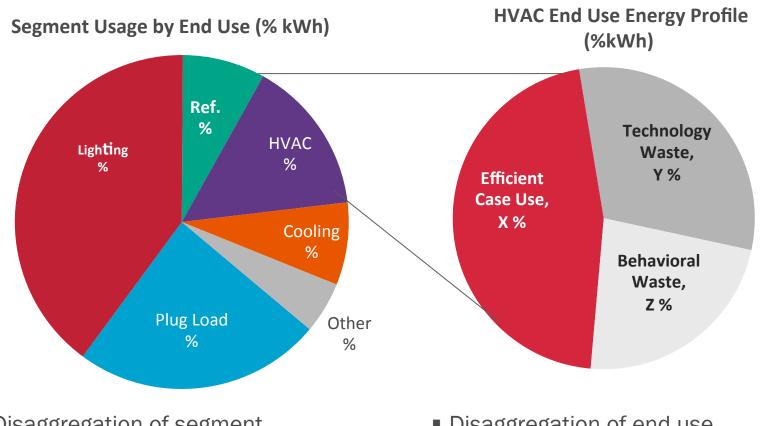
SAVING WASTE: ENERGY USE AND WASTE ANALYSIS BY END-USE

Bill Norton

Opinion Dynamics Corporation November 13, 2012

Presentation Overview

- Statement of research objectives
- Review of traditional approach
- Overview of usage and waste analysis
- Application of results/implications for future research



Research Objectives

- Identify gaps in program offerings by providing a more complete assessment of usage at the end-use level
- Disaggregate electricity usage by end-use and segment
- Develop energy use profiles by end-use and segment that quantify:
 - Base case usage
 - Excess energy use due to inefficient technologies
 - Energy "waste" due to customer behaviors
 - Efficient case usage

Research Objectives (cont.)

 Disaggregation of segment usage by end use Disaggregation of end use specific usage into efficient case and waste components

Standard Approach

- A traditional potential study quantifies available energy savings from DSM by segments
- Forecasts are developed by:
 - Understanding baseline energy usage and market conditions
 - Modeling/forecasting market response to DSM programs

Where Behavior Gets Lost

- Traditional potential study produces results too blunt for strategic program planning and program gap analysis:
 - Rely heavily on secondary data reflecting regional/national trends
 - Results do not adequately reflect potential associated with behavior change
- Behavior is addressed:
 - Embedded within engineering algorithms (e.g. Hours of Use)
 - Reflected in assumptions regarding efficient measure adoption

However...

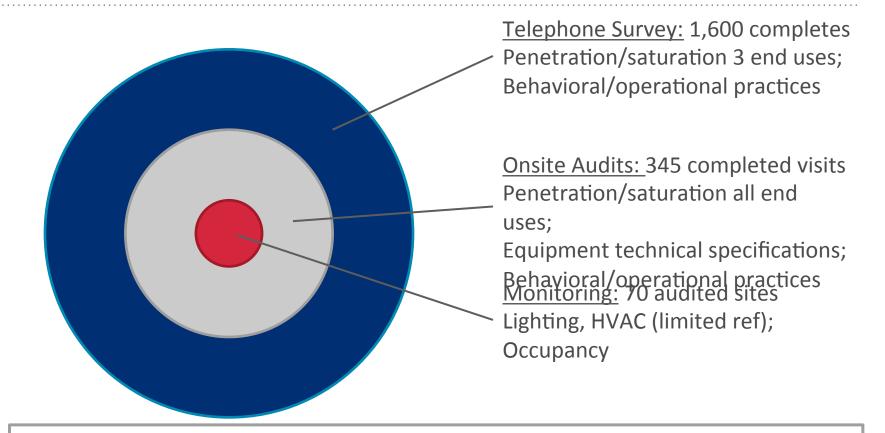
- Baseline assumptions used no adjustment for "efficient" behaviors
- Engineering assumptions fail to capture all behavioral influences

Behavioral Component

Energy use is defined by the interaction between end users and technology – accurately assessing behavioral component is critical to quantifying savings potential

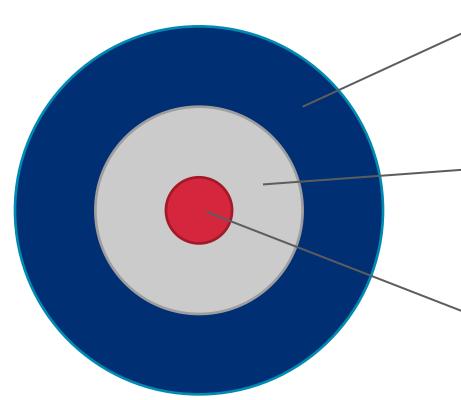
EXAMPLE: ELECTRIC SAVINGS FOR HIGH SEER CAC $\Delta kWH = (FLHcool * BtuH * (1/SEERbase - 1/SEERee))/1000$

> End user behavior is embedded here and represents assumed set points at given outside air temps



A New Approach

- Enhanced primary data collection to inform understanding of:
 - Baseline equipment saturation and penetration
 - Baseline building and equipment characteristics
 - Customer equipment use and occupancy patterns
- Determination of efficient case behaviors for end uses
- Enhanced engineering assessment to more accurately reflect behavioral component of energy use and waste


Primary Data Collection: C&I

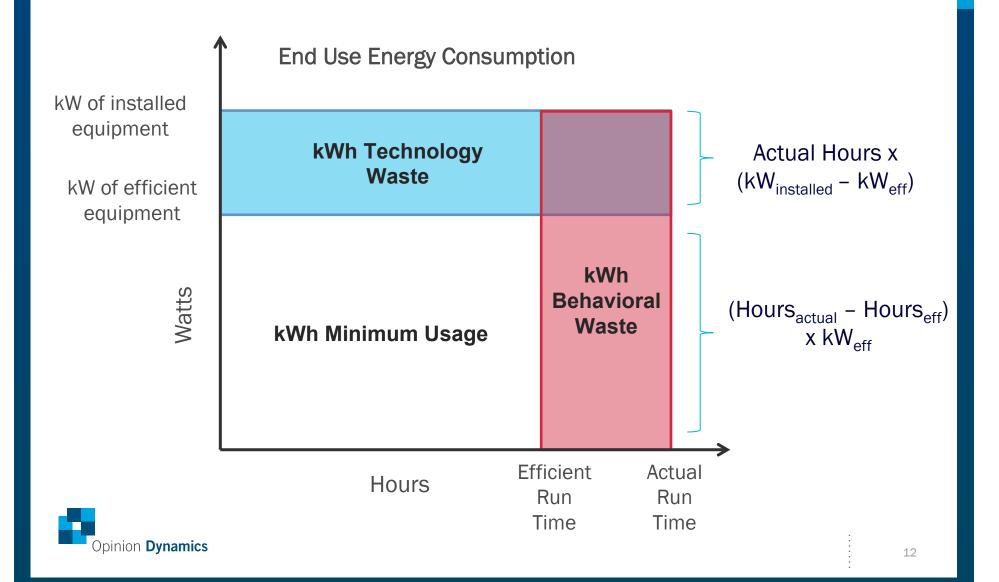
- Nested sample design 311 onsite audits
- Audits completed at sites not nested in phone survey sample included collection of segment & operational information during recruitment calls

Primary Data Collection: Residential

Mail Survey: 4,414 completes; • Penetration/saturation; Behavioral/ operational practices

<u>On-Site Audits:</u> 297 completes; Penetration/saturation all end uses; Equipment technical specifications; Behavioral/ operational practices <u>Monitoring:</u> 140 completes; Current logging on all circuits; Lighting / occupancy logging; Temperature and humidity

- Originally designed as fully nested sample
- Audits completed at sites not nested in phone survey sample included collection of segment & operational information during recruitment calls



Waste Definitions

Waste Type	Examples		
Technological			
Equipment Characteristics	Equipment type is not high efficiency		
	- incandescent instead of CFL;		
	- standard instead of Energy Star;		
	- regular furnace fan (not ECM);		
	- regular showerheads		
	- no faucet aerators		
Behavioral			
	Equipment is left on or in standby mode		
Hours of Use	when not in use		
	Programmable thermostat not aligned with		
	occupancy hours		
Performance/Temperature Settings	Water temperate too high		
	Thermostat set points too low in summer		
	Furnace fans always on, rather than auto		
Maintenance	HVAC tuned up regularly		

End Use Usage & Waste Definition

Determine actual usage based on primary data:

*kWh*_{actual} = *kW*/Ton_{type} *X* Tons_{user} *X EFLH*_{user}

EFLH_{user} determined by CDD profile and equipment "design day". Model user CDD for different time of day periods and occupancy conditions based on customer behaviors (set points).

where:

 KW/Ton_{type} = Power draw per ton of cooling, a function of SEER Tons_{user} = User System capacity in tons EFLH_{user} = Equivalent full load hours

Home A

		Actual
Time	Set Point	CDD
6am-9am	78.5	16.7
9am-12pm	82	41.2
12pm-4pm	82	117.6
4pm-7pm	76.5	135.8
7pm-10pm	76.5	59.1
10pm-6am	78.5	30.0
	Total	400.4

EFLH = 320.3

Home B

		Actual
Time	Set Point	CDD
6am-9am	67	85.3
9am-12pm	67	201.3
12pm-4pm	67	368.5
4pm-7pm	67	235.6
7pm-10pm	67	131.2
10pm-6am	67	154.9
	Total	1176.8

EFLH = 941.5

- Determine technology waste associated with three categories of potential efficiency upgrades that affect CAC usage:
 - CAC unit efficiency
 - Building shell
 - Duct sealing
- For each category waste calculated as:

 $kWh_{waste} = kWh_{actual} - kWh_{efficient}$

Setting	Time	Setpoint Temperature (Heat)	Setpoint Temperature (Cool)
Wake	6:00 a.m.	< 70° F	> 78° F
Day	8:00 a.m.	Setback at least 8° F	Setup at least 7° F
Evening	6:00 p.m.	< 70° F	> 78° F
Sleep	10:00 p.m.	Setback at least 8° F	Setup at least 4° F

Home A

	Occu-	Rec. Set	
Time	pancy	Pt.	Opt. CDD
6am-9am	Home	78	19.2
9am-12pm	Home	78	87.2
12pm-4pm	Home	78	190.9
4pm-7pm	Home	78	115.3
7pm-10pm	Home	78	46.3
10pm-6am	Asleep	82	12.1
		Total	471.0

EFLH_{opt behave}= 376.8

Home B

	Occu-	Rec. Set	
Time	pancy	Pt.	Opt. CDD
6am-9am	Home	78	19.2
9am-12pm	Away	85	23.4
12pm-4pm	Away	85	75.5
4pm-7pm	Home	78	115.3
7pm-10pm	Home	78	46.3
10pm-6am	Asleep	82	12.1
		Total	291.8

EFLH_{opt behave}= 233.4

Getting to Behavioral Waste

Why This Matters

Benefits of the study:

 Improved understanding of current end use energy consumption – particularly behavioral drivers

- Measurement of the behavior savings potential by end-use and segment
- Enhanced primary data provides basis for other analyses and ability to address other research questions - stimulate new research objectives

Implications for Program Planning

- Assess efficacy of technology and behavioral program options to optimize DSM investment
- Identify and prioritize among "opportunity pockets"
 Customer segments or end uses where energy savings can be realized through behavioral program elements or messaging
- Assess benefits of replacing widgets or attempting to change how widgets are used, or both

