Bill Confusion

Severin Borenstein Lucas Davis Koichiro Ito

Motivation: Utility bills are often combined bills

- PG&E energy bill = Electricity + Gas
- City of Palo Alto utility bill = Electricity + Gas + Water + Sewage + Garbage
- AT&T bill = Cell Phone + Data Plan + Land Phone + Internet

Research question

- Do combined bills confuse or weaken price signals of each product?
- Two possibilities:
 - 1) Standard theory: consumers capture each price signal correctly
 - 2) Heuristic: consumers may respond to "bill" or average price of "bill"
 - React to irrelevant prices
 - Under-react to relevant prices
 - Literature: limited attention to complex price signals
 - Under-react to non-salient taxes (Chetty, Looney, and Kroft 2009)
 - Under-react to lower digit numbers (Lacetera, Pope, and Sydnor 2012)
- We test this hypothesis by examining electricity demand in PG&E
 - PG&E customers receive either combined bills or split bills of gas & electric
 - Changes in natural gas price ---> affect electricity demand differently?

Combined bill and Split bill customers in Kern County

DECISION NO. 62681

LEE SCHAVRIEN SENIOR VICE PRESIDENT REGULATORY AFFAIRS

EFFECTIVE July 6, 2007 RESOLUTION NO. G-3197

Focus on Combined and Split bill customers in the city of Bakersfield

Basic idea behind our research design

- Natural gas price (Pg) can affect electricity demand in two ways
 - Cross price elasticity $(\theta_1 > 0)$
 - Bill confusion effect ($\theta_2 < 0$)
- Required assumption in our research design:
 - Underlying elasticity is the same between "combined" and "split" customers

	Substitution effect	Bill confusion effect
Split Bill Customers	θ1	none
Combined Bill Customers	θ1	θ2

Movement of procurement charges in PG&E and SoCal Gas (\$ per therm)

Data

- Household-level monthly electricity billing data from PG&E
 - Nine-digit zip code (e.g. 94720-5180)
 - Premise ID and customer account ID
 - Ideal data: List of premise ID with their natural gas provider
- Map of natural gas service territories in Kern County
 - Township and sections
 - We match 1) nine digit zip code with 2) township-sections
 - Caveat:
 - We are still not 100% sure how accurate the map's boundaries are
 - Currently asking PG&E to share the list of premise & gas provider

Data

- Weather data
 - We can include month-by-year FE
 - But customers have different billing cycles
 - Our regression includes quadratic controls of CDD and HDD
 - 4km by 4km daily temperature data
 - Algorithm used by Schlenker and Roberts (2009)
- Natural gas price data
 - Residential natural gas price data from PG&E and SoCal Gas
 - Both of their gas price schedules are two-tier increasing block pricing

Identification strategy

$$lnQ_{i,t} = c_{i,m} + c_t + \theta_1 \cdot lnP_{Gi,t} + \theta_2 \cdot Comb_i \cdot lnP_{Gi,t} + \eta \cdot X_{i,t} + u_{i,t}$$

Q _{i,t}	Electricity consumption of household i in t	
C _{i,m}	Household-month fixed effect	
Ct	Time fixed effect	
Θ_1	Cross-price elasticity	
P _{Gi,t}	Natural gas price	
θ_2	Bill confusion parameter	
Combi	Dummy variable for combined bill customers	
X _{i,t}	Controls for weather	

- Samples are households in the city of Bakersfield
- We use $PG_{i,t}$ = the second tier rate of two-tier increasing block price schedules
- Using the first tier rate does not change the results

Price variation in retail natural gas price

e.g.) $\Delta \ln P_{2005,m10} = \ln P_{2005,m10} - \ln P_{2004,m10}$

П

Price variation in retail natural gas price

e.g.) $\Delta \ln P_{2005,m10} = \ln P_{2005,m10} - \ln P_{2004,m10}$

Preliminary result: Dependent variable = In(Electricity Consumption)

$$lnQ_{i,t} = c_{i,m} + c_t + \theta_1 \cdot lnP_{Gi,t} + \theta_2 \cdot Comb_i \cdot lnP_{Gi,t} + \eta \cdot X_{i,t} + u_{i,t}$$

	(1)	
ln(Natural Gas Price)	0.009	θ_1 = cross elasticity
	(0.013)	
Comb*ln(Natural Gas Price)	-0.041***	\leftarrow θ_2 = bill confusion
	(0.008)	parameter
Cooling Degree Days	0.039***	
	(0.001)	
${\bf Cooling\ Degree\ Days}^2$	0.0003	
	(0.0002)	
Heating Degree Days	0.009***	
	(0.001)	*** 1% significance level
${\bf Heating\ Degree\ Days}^2$	0.001***	Standard errors are clustered at the
	(0.0001)	household-level
N	455514	

Next steps

- Hopefully, we can get a list of premise ID and natural gas providers
 - Exact matching of premise ID and gas providers
 - See if the results are robust if we limit the sample closer to the border
- Think through more about the model of bill confusion
 - "bill confusion parameter" in the current estimation is very "reduced form"
 - Working on building a simple model that leads to a estimating equation
- We also need to include "electricity price"
 - Potentially, bill confused consumers under-react to electricity price

Thank you!

Thank you for your attention!

Backup Slides

Backup Slides

Focus on Combined and Split bill customers in the city of Bakersfield

Split bill customers

Electric: PG&E

Gas: SoCal Gas

Combined bill customers

Electric: PG&E

Gas: PG&E

Price variation in retail natural gas price = Δ ln(price per therm)

e.g.) $\Delta \ln P_{2005,m10} = \ln P_{2005,m10} - \ln P_{2004,m10}$

