Travel-based Multitasking: How Does it Influence the Value of Travel Time?

Alexander Malokin <amalokin@ucdavis.edu>

Patricia L. Mokhtarian

Giovanni Circella

Institute of Transportation Studies University of California, Davis

Behavior, Energy & Climate Change Conference Sacramento, CA

11/13/2012

1. Motivation

{

- **2.** Data highlights
- **3.** Preliminary results
- 4. Future prospects
 }

Research background

Conventional wisdom: daily travel presents **disutility** and ought to be **minimized**.

Is commuting time actually **wasted?** Consider a range of **activities** one can engage in while traveling (+ ever growing **ICT** opportunities).

Is there a link between people's attitudes and behavior towards fragmented time (multitasking propensities), monetized benefits of travel time (its value) and mode choice?

Survey design

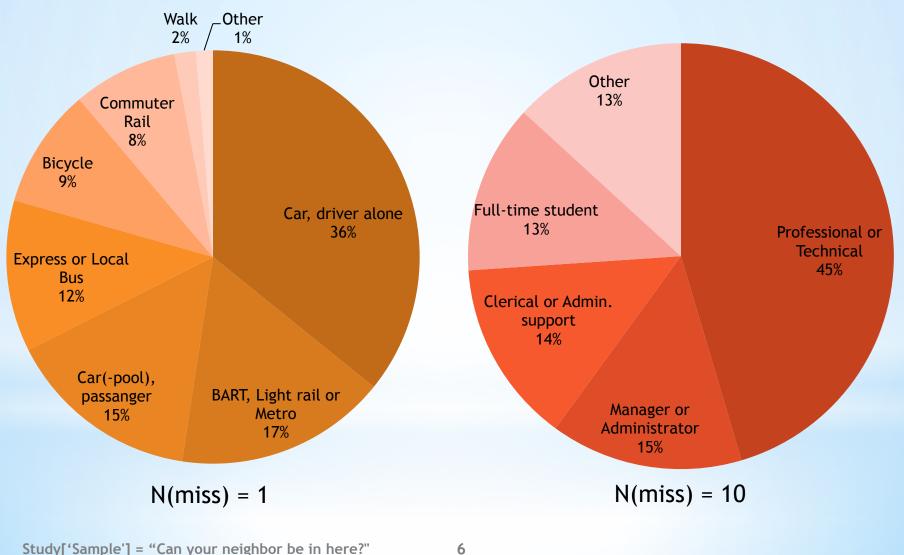
- Part A: Attitudes and Personality
- Part B: Multitasking Attitudes
- Part C: Time Use Expectations and Preferences
- Part D: Attitudes toward Waiting
- Part E: Perceptions of Four Transportation Commute Modes
- Part F: A Recent Commute Trip
- Part G: "Internet Access On-the-Go"
- Part H: Daily Commute
- Part I: Sociodemographic Traits
 - \rightarrow more than 800 original variables

Rata collection effort

Mode-specific:

- * SacRT
- * Capital Corridor (Amtrak)
- * BART
- * Yolobus

Organizationspecific:


- * Google
- * Commuter Club
- * UC Davis

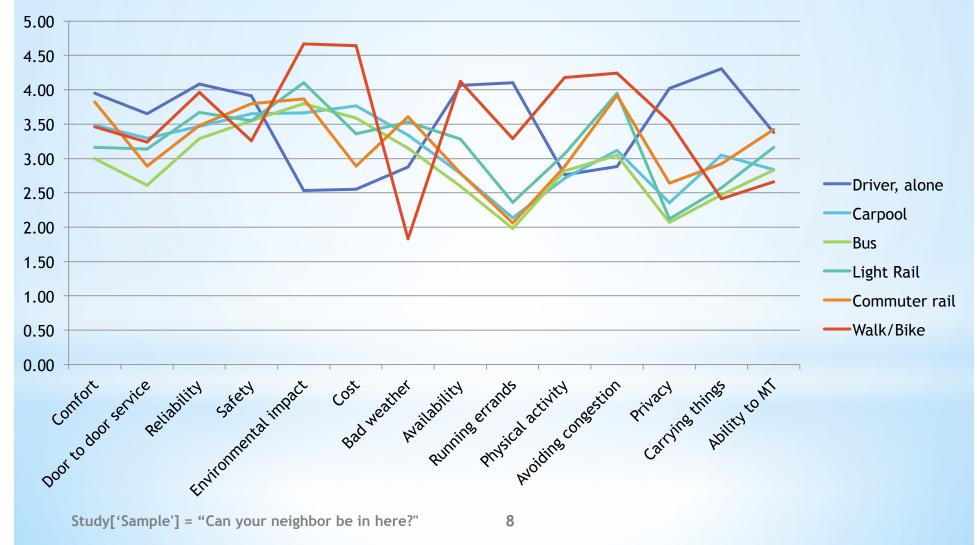
Email-blast: * Infogroup Mail-blast: * BulkMail Panel: * Survey Analytics

3 weeks of ~3,000 paper survey distribution+3 months of ~30 varieties of web surveys online+6 months of data entry, filtering and conditioning

Data highlights (N = 2849)

6

Rata highlights (N = 2849)

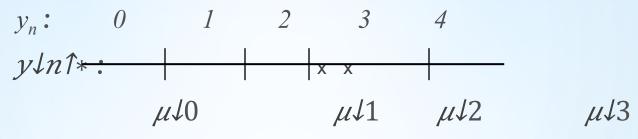

Crosstabulation of HH income and stated commute duration, row %

	Less than 15 minutes	15-30 minutes	31-45 minutes	46 minutes - 1 hour	1 - 1½ hours	1½ - 2 hours	More than two hours	Total
Less than \$25,000	35.1	33.5	10.9	8.4	5.4	4.2	2.5	239
\$25,000 to \$49,999	22.8	33.4	18.2	13.2	7.3	4.3	0.8	395
\$50,000 to \$74,999	16.5	31.4	19.6	16.5	10.6	3.1	2.2	545
\$75,000 to \$99,999	14.0	33.9	20.5	16.4	9.5	4.5	1.2	507
\$100,000 to \$124,999	15.3	26.7	18.2	17.5	13.7	6.6	2.1	424
\$125,000 or more	12.6	22.9	20.7	18.3	14.1	6.2	5.2	595
Total	17.6	29.7	18.8	15.8	10.7	4.9	2.5	2705

Study['Sample'] = "Can your neighbor be in here?"

Rata highlights (N = 2849)

Mode-specific means of mode perception items



Ordered Probit

In terms of its value to you, how would you rate the time you spent on this recent commute?

Mostly wasted time

Mostly useful time

Underlying latent continuous variable:

$$y \downarrow n \uparrow * = \beta' x \downarrow n + \varepsilon \downarrow n$$

Observed value of travel time:

Probabilities of falling into categories:

 $y \downarrow n \uparrow = \{ \blacksquare 0 \text{ if} - \infty < y \downarrow n \uparrow * \le \mu \downarrow 0 1 \text{ if} \mu \downarrow 0 < y \downarrow n \uparrow * \le \mu \downarrow 1 2 \text{ if} \\ \mu \downarrow 1 < y \downarrow n \uparrow * \le \mu \downarrow 2 3 \text{ if} \mu \downarrow 2 < y \downarrow n \uparrow * \le \mu \downarrow 3 4 \text{ if} \mu \downarrow 3 < y \downarrow n \uparrow * < \mu \downarrow 3 < y \downarrow n \uparrow * < \mu \downarrow 3 < y \downarrow n \uparrow * < \mu \downarrow 3 < y \downarrow n \uparrow * < \mu \downarrow 3 < y \downarrow n \uparrow * < \mu \downarrow 3 < y \downarrow n \uparrow * < \mu \downarrow 3 < \mu$

 $PJn(0) = \Phi(\mu J0 - \beta' x Jn)$ $PJn(0) = \Phi(\mu Jj + 1 - \beta' x Jn) - \Phi(\mu Jj - \beta' x Jn)$ T' x Jn

 $Pln(l)=1-\Phi(ull-\beta'xln)$

Study['Method'] = "Snippet of math"

Model parameters

Study['

Summary statistics	Outcome frequencies		
$\mathcal{L}(\beta) = -2507.497$	y↓n	Count	Frequency
$\mathcal{L}(c) = -3063.566$	0	191	0.094
$\mathcal{L}(0) = -3268.768$	1	270	0.132
<i>d.f.</i> =30	2	685	0.337
$-2[\mathcal{L}(0) - \mathcal{L}(\beta)] = 1522.543$	3	549	0.270
Regression OLS: $R^{\uparrow}2 = 0.42$ Adjusted $R^{\uparrow}2 = 0.41$	4	336	0.165

Model constant and thresholds

	Variable	Coefficient (β_k)	p-value	Mean
	Constant (µJ 0)	0.51	0.00	_
	μ /1	0.78	0.00	_
	μJ2	2.04	0.00	_
Mod	μ /3	3.13	10 0.00	_

Personal attitudes, preferences and behavior

Variable	Coefficient (β_k)	p-value	Mean
Pro-transit	0.05	0.08	0.07
Necessity of travel	-0.18	0.00	0.02
Commute advantage	0.24	0.00	-0.08
Satisfaction	0.04	0.10	0.08
Job for money	-0.04	0.12	0.01
Day off	-0.04	0.10	0.00
Organized	0.05	0.03	0.01
Monotasking behavior	0.04	0.10	-0.02
Multitasking preference	0.04	0.09	-0.01
Traditional leisure&social time use	0.07	0.00	-0.04
Work time use	-0.04	0.10	0.02

Mode specifying variables

Variable	Coefficient (β_k)	p-value	Mean
Mode cost/benefit	0.18	0.00	0.03
Mode comfort	0.08	0.01	0.24
Mode MT/ productivity	0.14	0.00	0.32
Contented waiting	0.18	0.00	-0.05
Equipped waiting	0.06	0.01	-0.01
Drive alone	-0.19	0.03	0.44
Commuter rail	0.32	0.01	0.08

Travel attributes

Variable	Coefficient (β_k)	p-value	Mean
Commute duration (quadratic)	-0.00001	0.04	2793.67
MT conditions during commute	0.20	0.02	2.82

Study['Model'] = "Even more of them"

Activities while traveling

Variable	Coefficient (β_k)	p-value	Mean
Daydreaming	-0.14	0.01	0.51
Conversing (leisure)	0.08	0.10	0.46
Hi-Tech (work)	0.16	0.01	0.32
Writing (work)	0.16	0.01	0.18
Reading (leisure)	0.09	0.06	0.41
Internet on laptop	0.20	0.02	0.12
Internet usage on the road	0.04	0.06	1.39

Socio-economic aspects

Variable	Coefficient (β_k)	p-value	Mean
Female	0.16	0.00	0.63
Age cohort	0.12	0.00	2.58
Vehicle availability	0.05	0.02	4.5

Study['Model'] = "We're almost done!"

Results summary

- * Respondents who spend more time working, view their jobs as just a source of income
- *Commuters who view the travel as movement from point A to point B
- *Drivers
- *Respondents who have longer distance commute
- *Commuters who daydream

- * Commuters who are satisfied with their life and job and spend much time with their friends and family
- * Respondents who take advantage of commute time and organized
- * Commuter rail riders
- * Respondents who are contented and equipped to wait
- * Commuters who view their selected mode beneficial, comforting and productive
- * Respondents who use ICT
- * Females and people of older age cohorts

Future analyses

* Develop a discrete choice model of primary commute mode

- * Estimate the impact of multitasking-related explanatory variables on the shares of each alternative
- * Examine time and cost tradeoffs with respect to multitasking behaviors
- * Identify groups of people with similar polychronicity profiles
- * Model choice to multitask
- * Explore population heterogeneity
- * Undertake international comparisons

Acknowledgements

Graduate students: Amanda J. Neufeld Visiting scholars: Zhi Dong (Tongji **University**) Undergraduate students: Cheng Zhuo Aurina Lam **Eileen** Coleto Adam Stocker Valerie Onuoha Andre Tu Kelly Caines

