Fostering Peer Interaction to Save Energy

Ankur Mani¹, Claire Michelle Loock², Iyad Rahwan^{3,4}, Thorsten Staake², Elgar Fleisch², and Alex (Sandy) Pentland¹

- 1. MIT
- 2. ETH Zurich
- 3. Masdar Institute
- 4. University of Edinburgh

November, 20, 2013

Background

- Peer enforcement of cooperative norms has been widely studied (Ostrom, 2009 Nobel Prize Lecture, Kandori, 1992, Schulz et. al., 2007).
- Evidence suggests that fostering peer interaction leads to cooperation (Dietz, Ostrom, Stern, 2003, Breza, 2012)
- ► (Calvo-Armengol and Jackson, 2010) show that cooperation can be achieved through peer pressure.

Global externality: Individual's action affects all of society

Local externality: Individual action only affects their peers

Externalities model with peer pressure, actor's utility is:

$$U_i(\mathbf{x}, \mathbf{p}) = u_i(x_i) - v_i \left(\sum_{j \neq i} x_j \right) - (x_i - x_i^{\circ}) \sum_{j \in Nbr(i)} p_{ji} - c \sum_{j \in Nbr(i)} p_{ij}$$

where:

 x_i is actual consumption.

 x_i° is the socially optimal consumption.

 p_{ij} is the pressure by i on j

Social mechanism rewards peers for individuals cooperative action, thus localizing the externalities instead of internalizing them.

Reward to i given consumption of j:

$$r_{ji}(x_j) = (\alpha_j + \beta_i)(x_j - x_j^*)$$

where $\alpha_j = c u_j''(x_j^\circ)$ depends upon the consumer

and
$$eta_i = v_i'\left(\sum_{k
eq i} x_k^\circ
ight)$$
 depends upon the peer

Main results:

► The budget for the rewards in the Pigouvian Mechanism (direct reward) is at least twice the budget for the rewards in the social mechanism.

Main results:

- ► The budget for the rewards in the Pigouvian Mechanism (direct reward) is at least twice the budget for the rewards in the social mechanism.
- Under low budget, the outcome under the social mechanism is superior (has higher social surplus) to the outcome under the Pigouvian mechanism.

Main results:

- ► The budget for the rewards in the Pigouvian Mechanism (direct reward) is at least twice the budget for the rewards in the social mechanism.
- Under low budget, the outcome under the social mechanism is superior (has higher social surplus) to the outcome under the Pigouvian mechanism.
- When there is no budget, just sharing information about individual actions among the peers achieves a better outcome than the equilibrium outcome.

Main results:

- ► The budget for the rewards in the Pigouvian Mechanism (direct reward) is at least twice the budget for the rewards in the social mechanism.
- Under low budget, the outcome under the social mechanism is superior (has higher social surplus) to the outcome under the Pigouvian mechanism.
- When there is no budget, just sharing information about individual actions among the peers achieves a better outcome than the equilibrium outcome.
- Validated by experiment to improve physical activity in a community.

Program to Promote Energy Conservation

BEN Energy

- In Poschiavo, Graubunden (CH)
- ▶ Unlike in the US, only 5% of the households in Switzerland use electricity for heat.
- Main consumption is for heating water, refrigerator, lighting and household appliances.
- Major utility company in Switzerland (50.000 private customers)
- ► Utility company and 5 partners introduced website, efficiency mailings, and mobile app
- Most customers are single family households.
- ▶ 1055 customers participated

Program

- Advice on how to save energy on http://munx.ch
- ► Earned points (1 point = 0.10 CHF) used in online shop
- ▶ 10 points per week for entering meter readings (verified by a software and random visits to households)

Program

- ► Each user can invite up to five buddies (teams of two)
- ▶ If a user reduced consumption compared to the previous week, her buddy gets 5 points

Data Characteristics

- Only 5% of the population uses electricity for heat.
- ▶ 401 customers out of 1055 users of the web portal signed up in the first 20 weeks.
- ▶ 132 customers made buddies and were in the treatment group.
- ▶ 208 customers entered meter readings more than once.
- The annual average daily consumption for the year 2011 was 14 Kwh/day.
- ▶ The customers that made buddies had similar consumption statistics as the customers who did not make buddies before the experiment (p-value was 0.91).

Results: Quick Overview

- Customers who made buddies reduced consumption over previous weeks 30.27% times while customers who did not make buddies reduced consumption over previous weeks 25,23% times.
- ▶ Before making buddies the customers reduced consumption only previous weeks only 25.56% times.

Other Results: Average Consumption in Different Groups

Green: consumption after forming buddies Overall fluctuation due to temperature

Other Results: Average Consumption Against Temperature

Both decrease, but treatment always below

Other Results: Effect of Treatment on Consumption Empirical Strategy:

$$y_{i,t} = \alpha + \beta t + \gamma x_i + \nu_{i,t}$$

- t: average weekly temperature
- $y_{i,t}$: average hourly consumption over the entire week of the *i*th consumer when the average weekly temperature is t
- x_i is the treatment indicator
- \triangleright α : the average baseline consumption of the population
- \triangleright β : the temperature effect
- $\triangleright \gamma$: is the treatment effect
- $\triangleright \nu_{i,t}$: the estimation error.

Other Results: Effect of Treatment on Consumption

Empirical Strategy:

$$y_{i,t} = \alpha + \beta t + \gamma x_i + \nu_{i,t}$$

- t: average weekly temperature
- ▶ y_{i,t}: average hourly consumption over the entire week of the ith consumer when the average weekly temperature is t
- x_i is the treatment indicator
- \triangleright α : the average baseline consumption of the population
- \triangleright β : the temperature effect
- $\triangleright \gamma$: is the treatment effect
- $\triangleright \nu_{i,t}$: the estimation error.

Variable	Regression Coefficient	p-value
Average Consumption	1.035	2.250e-136
Temperature	-0.018	1.395e-05
Treatment Effect	-0.180	0.00065

- ➤ Treatment effect is 4.32 Kwh/day. It is reasonable to assume it does not come from infrastructural changes in the short term.
- Reducing the use of hot water by 5 gallons/day saves 1 Kwh/day.

- ► Treatment effect is 4.32 Kwh/day. It is reasonable to assume it does not come from infrastructural changes in the short term.
- Reducing the use of hot water by 5 gallons/day saves 1 Kwh/day.
- ► Increasing the temperature of the refrigerator from 2° C to 7° C saves 0.5° Kwh/day.

- ► Treatment effect is 4.32 Kwh/day. It is reasonable to assume it does not come from infrastructural changes in the short term.
- Reducing the use of hot water by 5 gallons/day saves 1 Kwh/day.
- ► Increasing the temperature of the refrigerator from 2° C to 7° C saves 0.5° Kwh/day.
- Increasing the temperature of the freezer by 5° C saves 1° Kwh/day.

- ► Treatment effect is 4.32 Kwh/day. It is reasonable to assume it does not come from infrastructural changes in the short term.
- Reducing the use of hot water by 5 gallons/day saves 1 Kwh/day.
- ► Increasing the temperature of the refrigerator from 2° C to 7° C saves 0.5° Kwh/day.
- Increasing the temperature of the freezer by 5° C saves 1° Kwh/day.
- Putting appliances on standby saves 1 Kwh/day.

- ➤ Treatment effect is 4.32 Kwh/day. It is reasonable to assume it does not come from infrastructural changes in the short term.
- Reducing the use of hot water by 5 gallons/day saves 1 Kwh/day.
- ► Increasing the temperature of the refrigerator from 2° C to 7° C saves 0.5° Kwh/day.
- Increasing the temperature of the freezer by 5° C saves 1° Kwh/day.
- Putting appliances on standby saves 1 Kwh/day.
- Switching off 40 watt light bulbs for 30 hours or reding the use of 3 extra light bulbs reduces 1.2 Kwh/day.

- ➤ Treatment effect is 4.32 Kwh/day. It is reasonable to assume it does not come from infrastructural changes in the short term.
- Reducing the use of hot water by 5 gallons/day saves 1 Kwh/day.
- ► Increasing the temperature of the refrigerator from 2° C to 7° C saves 0.5° Kwh/day.
- Increasing the temperature of the freezer by 5° C saves 1° Kwh/day.
- ► Putting appliances on standby saves 1 Kwh/day.
- Switching off 40 watt light bulbs for 30 hours or reding the use of 3 extra light bulbs reduces 1.2 Kwh/day.
- Using dishwashers only when completely full saves 0.7 Kwh/day.

Reiss and White (2008) reports a 13% reduction in consumption over 60 days in California when the price increase from 10 cents per unit to 23 cents per unit.

Reiss and White (2008) reports a 13% reduction in consumption over 60 days in California when the price increase from 10 cents per unit to 23 cents per unit.

But:

▶ Price increase was massive (130%). Price elasticity was between 0.10 to 0.18.

Reiss and White (2008) reports a 13% reduction in consumption over 60 days in California when the price increase from 10 cents per unit to 23 cents per unit.

But:

- ▶ Price increase was massive (130%). Price elasticity was between 0.10 to 0.18.
- Consumption rebounded when the price was brought down by government intervention.

Reiss and White (2008) reports a 13% reduction in consumption over 60 days in California when the price increase from 10 cents per unit to 23 cents per unit.

But:

- ▶ Price increase was massive (130%). Price elasticity was between 0.10 to 0.18.
- Consumption rebounded when the price was brought down by government intervention.

Our program achieved 17.4% that is equivalent to the effect of 97% to 174% price increase.

▶ The long term price elasticity (1 year) estimates in California is 0.39 (Reiss and White (2005)). The treatment effect is equivalent to the effect of a long term prices increase of 45%.

Reiss and White (2008) reports a 13% reduction in consumption over 60 days in California when the price increase from 10 cents per unit to 23 cents per unit.

But:

- ▶ Price increase was massive (130%). Price elasticity was between 0.10 to 0.18.
- Consumption rebounded when the price was brought down by government intervention.

Our program achieved 17.4% that is equivalent to the effect of 97% to 174% price increase.

- ▶ The long term price elasticity (1 year) estimates in California is 0.39 (Reiss and White (2005)). The treatment effect is equivalent to the effect of a long term prices increase of 45%.
- ► The US Energy Information Administration estimates that a recently-proposed carbon cap-and-trade program would increase electricity prices by 2.5% in 2020 and 20% in 2030.

Comparision with Normative Effects

Mani, Rahwan, Pentland (2013) showed the power of peer pressure, even if simply induced by sharing information among peers.

Comparision with Normative Effects

- Mani, Rahwan, Pentland (2013) showed the power of peer pressure, even if simply induced by sharing information among peers.
- ► Allcott (2011): normative effects can reduce consumption by 2%, which otherwise require price increase of 11–20%

Comparision with Normative Effects

- Mani, Rahwan, Pentland (2013) showed the power of peer pressure, even if simply induced by sharing information among peers.
- ► Allcott (2011): normative effects can reduce consumption by 2%, which otherwise require price increase of 11–20%
- It turns out that while the high consumers reduce consumption, the low consumers increase consumption.
 - ▶ Unless you show them a smiley :) or grades like "A+" (Injunctive norms) Loock et. al. 2013.

Ongoing Work

- ► Generalizability to larger subject groups
- Dynamics of peer pressure
- Limits of peer pressure

Thank You