Effect of Policies for Vehicle Manufacturers in Nash Equilibrium

Alan Jenn, PhD - University of California, Davis
Ines Azevedo, Associate Professor Carnegie Mellon University

There is a rich landscape of policies shaping the future adoption and production of passenger vehicles

- Manufacturers:
- Corporate Average Fuel Economy (CAFE) standards
- Zero Emissions Vehicle (ZEV) mandate
- Consumers
- Monetary incentives (tax credits, rebates)
- High occupancy vehicle (HOV) lane access

Employing a Nash equilibrium model

Reasoning for model choice

- Pros
- Flexible enough to incorporate many types of policies
- Integrates a demand model based off of actual sales data
- Cons
- Computationally intensive system
- "Future" attributes are unknown

Model structure

- Demand side:

$$
\widehat{S}_{j}=\frac{\exp \left(\alpha x_{j}^{\text {piec }}+\beta x_{j}^{\text {emr }}+\delta_{a} z_{j a}\right)}{\sum_{j} \exp \left(\alpha x_{j}^{\text {piec }}+\beta x_{j}^{\text {eme }}+\delta_{a} z_{j a}\right)}
$$

- Discrete choice model based off of observed vehicle attributes
- Supply side:
- Maximizing profit by altering vehicle price and fuel efficiency
- Iterate until Nash equilbrium condition met

Snapshot of results, emissions rate by manufacturers

Discussion

- Modeling behavior of both firms and consumers is critical to understanding how policies are a two-way street, even if they only target one group
- Modeling details and modeling complexity is an essential tradeoff to consider
- Results indicate possible strategic nature of complying with policies that could lead to unexpected outcomes

