ACTUAL RESULTS WILL VARY

Ken Kurani Angela Sanguinetti Hannah Park

Graphics by Suhaila Sikand

BECC 2015 21 October

FIVE QUESTIONS

- 1. Why eco-driving?
- 2. What are eco-driving behaviors?
- 3. How much do they save?
- 4. How are they promoted?
- 5. What is a policymaker to do?

1. WHY ECO-DRIVING?

Social Goals

- Fuel economy
 - U.S. Corporate Average Fuel Economy (CAFE) standards
- Emissions: Clean air and climate
 - Local attainment plans
 - Zero emission vehicle credits
- Safety
 - Social cost of traffic accidents
- Private Goals
 - Private cost: Fuel, accidents
 - Self-identity: Efficient, thrifty, environmentally-conscious

2. WHAT ARE ECO-DRIVING BEHAVIORS?

Premise: Behaviors excluded by US CAFE test proceduresSources of variation in "Actual results will vary"?

What do we mean by "behavior"?

- A behavior analytic approach
 - Function: its effect/what it does (most important)
 - Topography: its observable form/what it looks like
 - Context: who emits the behavior, when, and where

CATEGORIES OF ECO-DRIVING BEHAVIOR

Category	Function: Why	Topography: What	Context: Who, when, where
Driving	Operate the vehicle to provide mobility services	Accelerating; cruising; decelerating; waiting; parking	Driver, en route, in-vehicle
Cabin Comfort	Comfort, communications, entertainment	Using HVAC, windows, auxiliary electronics	Driver and passengers; en route; in vehicle
Trip Planning	Routing from point A to point B	Selecting travel routes and time (road type, grade, right turns, congestion, trip-chaining	Driver; pre-trip and en route; in vehicle
Load Management	Be prepared for cargo and passengers	Managing cargo weight and aerodynamics (racks, etc.)	Driver or surrogate; pre-trip; home
Fueling	Fuel vehicle	Selecting fuel; preventing evaporation; PEV charging (frequency, level, and source)	Driver or surrogate; pre-trip(s); gas or charging station
Maintenance	Maintain vehicle	Changing oil; selecting oil; inflating tires; selecting tires; getting engine tuned	Driver, surrogate, or professional; intervals based on use; auto shop

3. HOW MUCH CAN ECO-DRIVING SAVE?

- I = impact
- t = technical potential (savings impact of the behavior)
- p = behavioral plasticity: proportion of population that can be induced to take the action
- n = total population that could possibly take the action
- k = each eco-driving behavior

Adapted from Stern, 2011, American Psychologist

HOW MUCH CAN ECO-DRIVING SAVE?

Sivak and Schoettle, 2012, Transport Policy

- Estimates technical potential (t) for multiple behaviors (k > 1)
- *Neglecting* eco-driving = 45% *decrease* in fuel economy
 - Most influential behaviors: Driving
 - "Aggressive driving"
 - Including frequency + intensity of pedal use; not using cruise control
 - Cruising speed (particularly excessively high speeds)

HOW MUCH CAN ECO-DRIVING SAVE?

Our review of 40 empirical studies of eco-driving, driving behavior

- Average impact of eco-driving interventions = **9%** increase in fuel economy
 - Estimate better reflects *plasticity*, but only for a subset of behaviors (k)
 - Three most commonly measured (variously operationalized):

1. Accelerating

2. Cruising

3. Decelerating

HOW MUCH CAN ECO-DRIVING SAVE?

The path to better savings estimates

- Define and measure eco-driving *behavior*!
 - 32/40 studies measured fuel economy
 - Only 24/40 studies measured behavior
- Define and measure eco-driving behaviors consistently across studies
- More research on network level impacts in different contexts
 - Alam & McNabola, 2012, Transport Policy

4. HOW IS ECO-DRIVING PROMOTED?

- Most research targets *driving* behaviors
- Most common strategy: In-vehicle feedback
 - 27/40 studies reviewed
 - Average 5.6% improvement in fuel economy
- Other strategies include:
 - Training
 - In-vivo coaching
 - Verbal instruction

HOW IS ECO-DRIVING PROMOTED?

Feedback is more effective when it:

- aligns with driver's goals, e.g., to get around faster, save money, etc.
- is adaptive, becoming more challenging as the driver progresses
- Other influential features include:
 - specificity of targeted behaviors
 - mode of interface, e.g., haptic or visual

Efficiency History

HOW IS ECO-DRIVING PROMOTED?

The path to more effective eco-driving feedback

- Meta-analysis of literature
- Systematic comparative research
 - Findings from the few comparative studies are singular
 - Map well-defined behaviors onto well-defined feedback types
 - Most studies are devoid of behavioral theory (re: design and measurement)
 - Address for whom and in what contexts feedback works for which behaviors
- Assessment of commercially available in-vehicle feedback

5. WHAT IS A POLICYMAKER TO DO?

- Standardized test procedures, e.g., CAFE, serve useful purposes
- Be careful of promises of energy and emissions outcomes
 - What behaviors?
 - Is k > 1?
 - Enacted by whom, where, and when?
 - Who is the population (n); how many of them will take up the behavior (p)?
 - Not just technical potential
 - What are the distributions of outcomes?
 - Across behaviors (functions, typologies, contexts), promotions, ...and individual driver-owner-buyers
 - What are the aggregate impacts over time?
- Do something

Ken Kurani knkurani@ucdavis.edu

Angela Sanguinetti asanguinetti@ucdavis.edu

http://ncst.ucdavis.edu/research /white-papers/