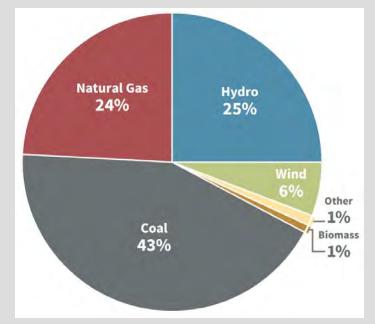
2016 BECC Conference

THE SOCIAL ACCEPTANCE OF COMMUNITY SOLAR: A PORTLAND CASE STUDY

Anne Weaver • MS Student • Portland State University • Environmental Science & Management

Agenda


Is Portland really as green as it claims to be?

Research:

- 1. Framework
- 2. Community solar background
- 3. Methodology
- 4. Anticipated results
- 5. Next Steps
- Broader Implications of Community Solar

Portland: are we really that green?

- Portland pioneered the Climate Action Plan legacy in the U.S.; we need to start walking the walk rather than just talking the talk.
- Target: 80% reduction in carbon emissions by 2050
- The "Clean Electricity & Coal Transition Plan" moves Oregon off of coal-fired generation and increases the state RPS to 50% by 2040.
- How can we achieve these goals?

Weighted average of electricity fuel sources in Multnomah County (2010-2012) Source: Portland Bureau of Planning and Sustainability

How can we reduce our carbon emissions?

- Behavioral change on all scales: individuals to organizations to institutions
- Education and raising awareness about new energy technologies and practices
- Residential and commercial adoption of new practices
- Expanding access to renewable energy for all market segments, not just middle to upper-class homeowners

Residential & commercial adoption of community (shared) solar projects

Graduate Thesis Project: Framework

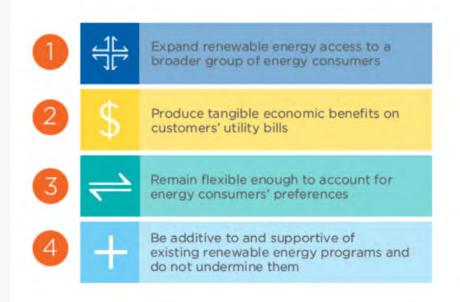
Vision: to contribute to Portland's climate change mitigation strategy by highlighting consumer interest in community solar. A stratified random sample of Portland residents are currently being surveyed to capture attitudes towards community solar and renewable energy.

Research Questions:

- Will community solar be socially accepted in Portland and elsewhere?
- Will community solar projects help break down the traditional barriers associated with residential adoption of solar-electric systems? How so?
- What are the attitudes of Portland residents in regards to community solar and what attributes will drive intent to participate in community solar projects?
- What framing methods or other project factors will help the diffusion of community solar in Portland? Can these preferences be applied to other cities or municipalities also interested in establishing a community solar program?
- Applicability of community solar to the DOI theory.

Community Solar: the Basics

What: Shared solar-electric systems


Who: Oregon residents (renters and homeowners), businesses, institutions

When: July 2017

Where: projects can be developed anywhere in the state of OR

Why: to expand renewable energy access and lower emissions

How: participants will sign up through their utility, either through a subscription plan or an ownership model

The guiding principles being used to establish the community solar program in Oregon. Source: Northwest SEED / Environment Oregon

Community Solar: How it Works

1. The solar array captures energy from the sunlight.

2. The electricity generated from the sun energy flows to the utility grid.

3. The utility calculates the amount of electricity produced and proportionally distributes the dollar value to the members of the community solar program (residents, businesses, institutions).

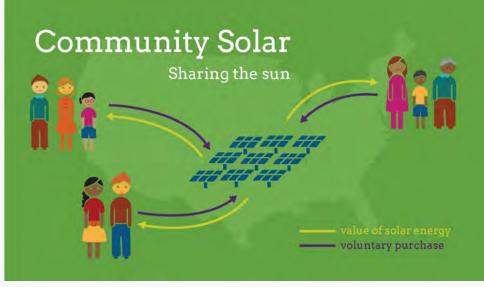
4. The value of the solar electricity produced from the array is then applied to each member's utility bill as a monthly credit.

Graduate Thesis Project: Methodology

- Mixed-mode survey of Portland electricity customers.
- 14 different neighborhoods surveyed, displaying a gradient of demographics.
- Survey topics include general energy beliefs, attitudes towards solar energy, preferences and willingness to pay for community solar projects, climate change beliefs, personal energy usage and behavior, and demographics.

Graduate Thesis Project: Anticipated Results

- Preliminary results indicate that most residents are unfamiliar with community solar, but are intrigued and interested in learning more.
- Enrollment costs heavily impact decision to participate. An upfront cost in addition to a higher monthly electricity bill is unpopular with most survey participants (unsurprisingly)
- Portlanders will likely adopt community solar, but affordability of these projects is key to a successful diffusion


Next Steps

- Finish collecting data
- Analyze data (descriptive statistics, cross-tabulation analysis, regression, and other tests)
- Develop summary report and distribute to interested parties
- Write thesis and submit manuscript

Conclusion: Broader Implications of Community Solar

- Potential to advance environmental equity
- Preferred project elements highlighted by survey can be used by the City of Portland and elsewhere.
- How can we make community solar a socially acceptable practice so that it can be rapidly adopted by residents?
- Community solar (if done right) = produce tangible economic benefits for residents + mitigate climate change.

Source: EnergySage

Acknowledgements

Special thanks to:

- My advisor, Dr. Max Nielsen-Pincus
- Research assistants: Tyler Mahone, Candice Loveland, & Emily Quinton
- Portland General Electric (PGE)
- Edward D. and Olive C. Bushby Scholarship Fund

References

Anderson, S., M. Armstrong, I. Fish, M. Crim, K. Diesner, T. Evans, D. Williams-Rajee, and T. Lynch. 2015. Climate Action Plan. Portland.

Arts, J. W. C., R. T. Frambach, and T. H. A. Bijmolt. 2011. Generalizations on consumer innovation adoption: A meta-analysis on drivers of intention and behavior. International Journal of Research in Marketing 28:134–144.

Bird, L., and J. Sumner. Consumer attitudes about renewable energy: trends and regional differences. Subcontract Report NREL/SR-6A20-50988. U.S. Department of Energy, National Renewable Energy Laboratory, Golden, Colorado, USA.

Booth, S. 2014. Here comes the sun: How securities regulations cast a shadow on the growth of community solar in the United States. UCLA Law Review 61:760–811.

Claudy, M. C., M. Peterson, and A. O'Driscoll. 2013. Understanding the attitude-behavior gap for renewable energy systems using behavioral reasoning theory. Journal of Macromarketing 33:273-287.

Faiers, A., and C. Neame. 2006. Consumer attitudes towards domestic solar power systems. Energy Policy 34:1797–1806.

Faiers, A., C. Neame, and M. Cook. 2007. The adoption of domestic solar-power systems: Do consumers assess product attributes in a stepwise process? Energy Policy 35:3418–3423.

Feldman, D., A. M. Brockway, E. Ulrich, R. Margolis. Shared solar: current landscape, market potential, and the impact of federal securities regulation. Technical Report NREL/TP-6A20-63892. U.S. Department of Energy, National Renewable Energy Laboratory, Golden, Colorado, USA.

Hamilton, L. C., J. Hartter, M. Lemcke-Stampone, D. W. Moore, and T. G. Safford. 2015. Tracking public beliefs about anthropogenic climate change. PLOS One 10:e0138208.

Jager, W. 2006. Stimulating the diffusion of photovoltaic systems: A behavioural perspective. Energy Policy 34:1935–1943.

Maize, K. 2015. Solar gardens: a fast-growing approach to photovoltaic power. Power: 30–33.

Mani, S., and T. Dhingra. 2012. Diffusion of innovation model of consumer behaviour – Ideas to accelerate adoption of renewable energy sources by consumer communities in India. Renewable Energy 39:162–165.

Moser, S. C. 2010. Communicating climate change: history, challenges, process and future directions. WIREs Climate Change 1:31-53

O'Shaughnessy, E., J. Heeter, L. Chang, E. Nobler. Status and trends in the U.S. voluntary green power market (2014 data). Technical Report NREL/TP-6A20-65252. U.S. Department of Energy, National Renewable Energy Laboratory, Golden, Colorado, USA

Rosoff, V. 2011. Framing Solar. Solar Today 25:62-66.

Steele, J., L. Bourke, A. E. Luloff, P. Liao, G. L. Theodori, and R. S. Krannich. 2001. The Drop-off/Pick-up method for household survey research. Journal of the Community Development Society 32: 238-250

Wüstenhagen, R., M. Wolsink, and M. J. Bürer. 2007. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 35:2683–2691