META-REVIEW OF BEHAVIOR-BASED ENERGY-SAVINGS POTENTIAL ESTIMATES FOR COMMERCIAL BUILDINGS

OCTOBER 22, 2016

BEHAVIOR IN COMMERCIAL BUILDINGS

People as problem OR

People as solution?

Buildings would work perfectly if it weren't for the people in them.

--Anonymous, ACEEE Conference, circa 1993

BEHAVIOR IN COMMERCIAL BUILDINGS

Simulations of occupant behavior in private offices

show that <u>occupants who are</u> proactive in saving energy....

...<u>consume 50% less</u>energy than average occupants.

-- Hong and Lin 2013

BEHAVIOR-BASED SAVINGS POTENTIAL: RESIDENTIAL

	Dietz et al. (2009)	Laitner & Ehrhardt- Martinez (2009)	Gardner & Stern (2008)
Focus:	Carbon Emissions Savings	Energy Savings Opportunities	Energy Savings Opportunities
Scope:	17 Household Actions	110 HH Actions (Roughly)	27 HH Actions (Roughly)
Potential Savings: Residential Sector	20% (of HH Direct Emissions)	22%	30%
Potential Savings: National	7.4% (of National Emissions)	9%	11%
Period to Achieve Max. Annual Savings	10 years	5 to 8 years	N/A

Conservative estimates for Residential and Personal Transport only.

BEHAVIOR-BASED SAVINGS POTENTIAL: COMMERCIAL

But what do we know about the energy savings that could be achieved via changes in <u>occupant</u> and <u>operator</u> behaviors in <u>commercial</u> buildings?

TABLE OF CONTENTS

1. Overview of the Studies

- 2. Comparisons and Insights
- 3. Take-Aways

STUDIES OF BEHAVIORAL POTENTIAL

Where we looked:

- Journal articles
- Conference proceedings: ACEEE, ECEEE
- Conference presentations: BECC

The studies we found:

- 1 Azar & Menassa 2014
- 2 Ehrhardt-Martinez 2015, 2016
- 3 Norton et al. 2013 / Burke & Baker 2008
- 4 Wikler et al. 2016

HIGH-LEVEL FINDINGS

8 / ©2016 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

MEASURES OF BEHAVIOR POTENTIAL

What do we mean by Potential?

Technical Potential: The amount of energy savings that would be
possible if ALL relevant opportunities to improve energy efficiency
are taken immediately.**Accounts for eligibility**

Achievable Potential: The energy efficiency savings that could be expected in response to specific barriers, incentives, influences and other factors that determine participation.

Accounts for eligibility and likely participation rates

"A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks" Energy Policy 67 (2014)

> **Method**: Commercial building energy modeling is used to emulate existing building conditions. Related studies in literature are used in the building energy modeling process to quantify the energy savings potential from improved building operations. Finally, sampling weights are used to generalize the obtained results to the entire stock of buildings under study.

			Behaviors		
Study	Scope	No.	Types	End Uses	Savings
Azar and Menassa 2014	Natl; Office Bldgs; Elec & N.Gas	4	Thermostat setpoints, unoccupied equip use & lighting	HVAC, equipment, lighting	Technical, 21%

EHRHARDT-MARTINEZ 2015, 2016

"Behavior-based Energy Savings Opportunities in Commercial Buildings: Estimates for Four U.S. Cities" *Proceedings of the ACEEE Summer Study* (2016)

CBECS DATA

(Commercial Buildings Energy Consumption Survey)

- Building Activities and Building Characteristics
- Building Count per building type and census division
- Building Area per building type and census division
- Energy Intensity per building type and census division

CENSUS DATA

• Population and demographic information

LITERATURE REVIEW AND EXPERT INSIGHTS

- Technology Saturation
- Energy consumption by end use and building type
- Opportunities for energy savings by building type and energy end use

EHRHARDT-MARTINEZ 2015, 2016

End Use	No. of Behaviors	End Use	No. of Behaviors
Space Heating	15	Cooking	3
Space Cooling	10	Refrigeration	11
Ventilation	5	Office Equipment	8
Water Heating	8	Computers	7
Lighting	12	Other	12

			Behaviors		
Study	Scope	No.	Types	End Uses	Savings
Ehrhardt- Martinez 2015, 2016	5 U.S. cities; 9 bldg. types; Elec & N.Gas	91	A wide range: thermostat set points to computers	All	Achievable 7%

"ComEd Residential and C&I Saturation/End-Use, Market Penetration & Behavior Study." with Vermont Energy Investment Corp and Mad Dash Field Services.

Method:

- 1. Extensive primary data collection and metering.
- 2. Determination of efficient technologies and behaviors for each end use.
- 3. Enhanced engineering analysis to assess energy usage and waste.

			Behaviors		
Study	Scope	No.	Types	End Uses	Savings
Norton 2013	ComEd; C&I. Elec.	16	Turn off, settings, maintenance, virtualization	Lighting, cooling, vent, motors, refrigeration, office equip.	Technical, 12-18%

WIKLER ET AL. (NAVIGANT) 2016

"A802 Technical Analysis: Potential Savings Analysis. Prepared for the California Public Utilities Commission. (2016)

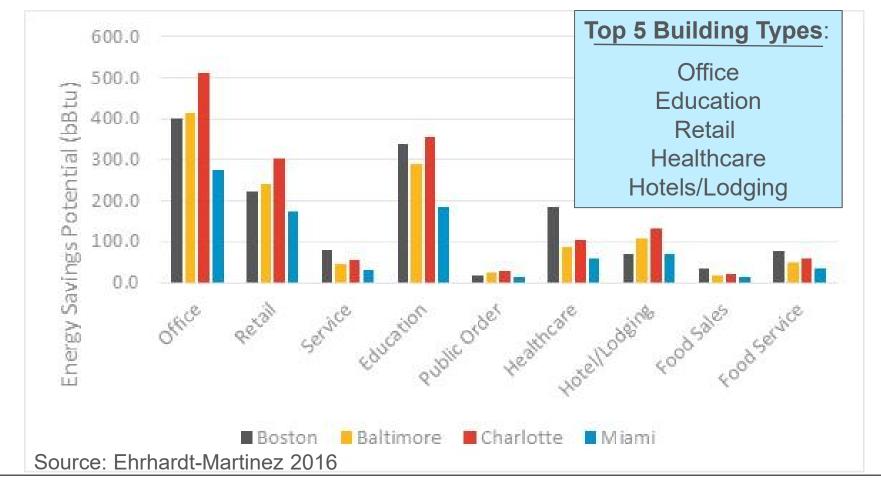
Method: Estimate savings opportunity associated with particular types of behavioral interventions given the existing building stock and equipment stock. Representative programs modeled: building operator certification, lighting controls, building energy management systems, and tenant engagement

			Behaviors		
Study	Scope	No.	Types	End Uses	Savings
Wikler et al. 2016	CA IOUs; Most comm. bldgs.; Elec & N.Gas	?	Bldg. operations, lighting controls, tenant engagement	HVAC, lighting, equip., plug load	Achievable <1%

TABLE OF CONTENTS

1. Overview of the Studies

2. Comparisons and Insights


3. Take-Aways

LOOKING ACROSS STUDIES

			Behaviors		
Study	Scope	No.	Types	End Uses	Savings
Azar and Menassa 2014	Natl; <mark>Office Bldgs;</mark> Elec & N.Gas	4	Thermostat setpoints, unoccupied equip use & lighting	HVAC, equipment, lighting	Tech 21%
Norton 2013	ComEd; <mark>C&I.</mark> Elec.	16	Turn off, settings, maintenance, virtualization	Lights, cooling, vent., motors, refrig., off. equip.	Tech 12-18%
Ehrhardt- Martinez 2015, 2016	5 U.S. cities; 9 bldg. types; Elec & N.Gas	91	A wide range: thermostat set points to computers	All	Achiev. 7%
Wikler et al. 2016	CA IOUs; Most comm. bldgs.; Elec & N.Gas	?	Bldg. operations, lighting controls, tenant engagement	HVAC, lighting, equip., plug load	Achiev. <1%

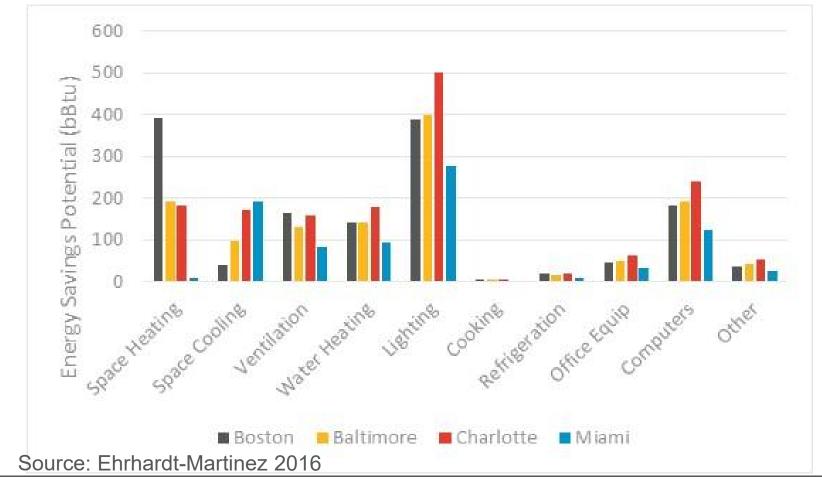
INSIGHTS: OFFICES, EDUCATION, RETAIL ARE IMPORTANT

BB Energy Savings Potential by Building Type and City

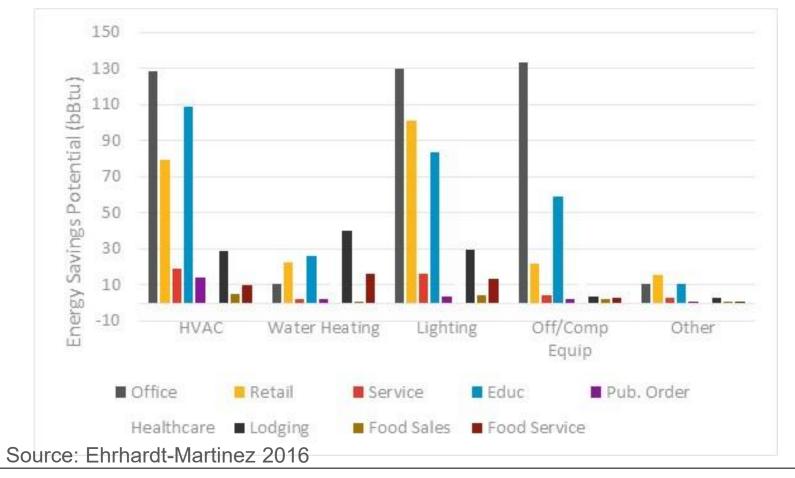
17 / ©2016 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

INSIGHTS: OFFICES, RETAIL, AND EDUCATION BUILDINGS REPRESENT A LOT OF THE BEHAVIOR-BASED OPPORTUNITY*

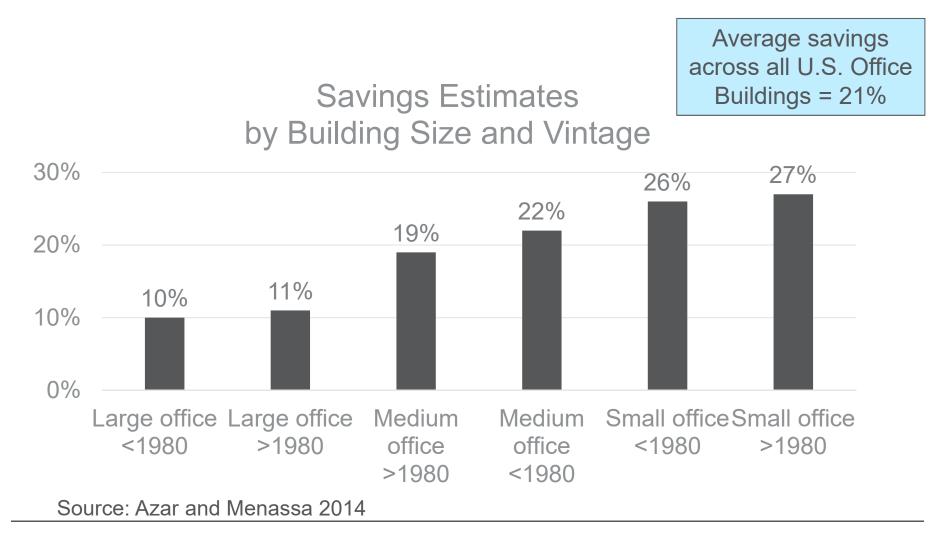
Building Type	% of City-level Savings
Offices	28%-33%
Education	22%-24%
Retail	16%-20%
Sub-Total	68%-75%
Remaining 6 Building Types	25%-32%
Total	100%


Source: Ehrhardt-Martinez 2016

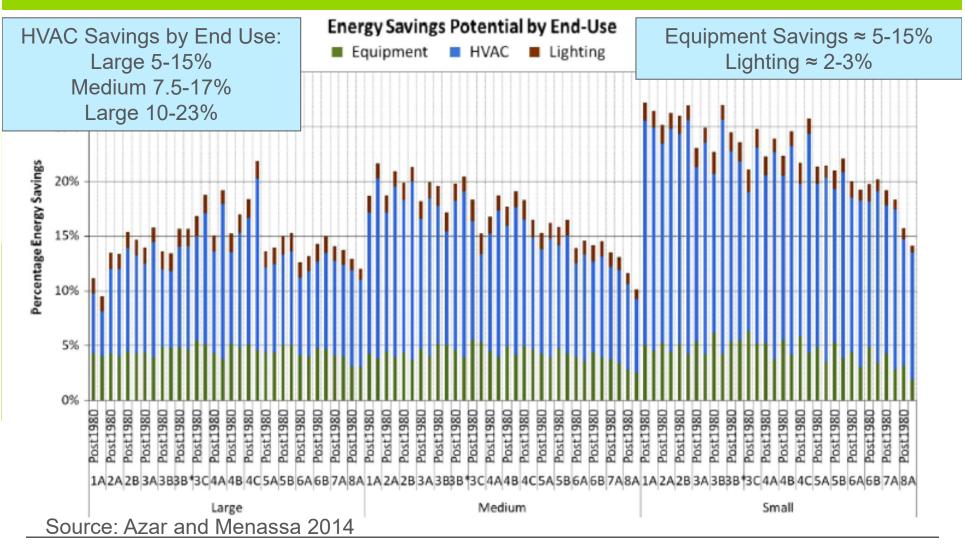
INSIGHTS: LIGHTING, HVAC, AND COMPUTERS ARE GOOD TARGETS


BB Energy Savings Potential by End Use and City

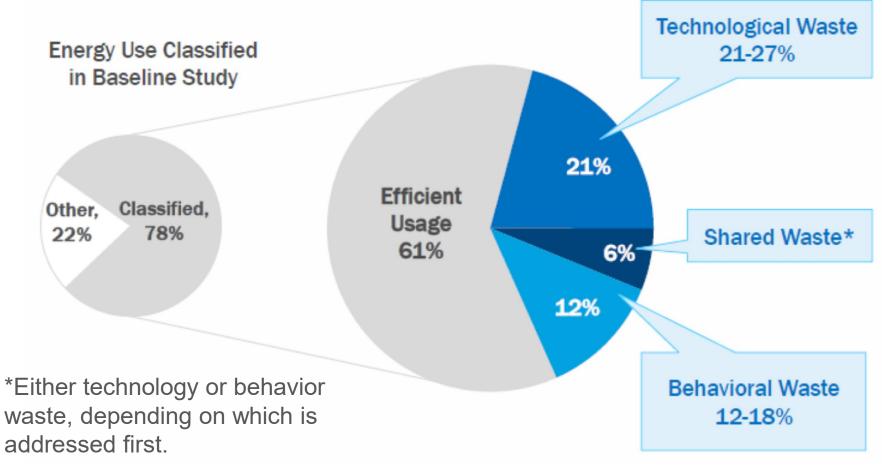
19 / ©2016 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED


INSIGHTS: END USE SAVINGS POTENTIAL VARIES DRAMATICALLY BY BUILDING TYPE

BB Energy Savings Potential by End Use and Building Type


20 / ©2016 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

INSIGHTS: OPERATOR-BASED SAVINGS OPPORTUNITY PROPORTIONALLY BIGGER IN SMALLER BUILDINGS


21 / ©2016 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

INSIGHTS: HVAC-RELATED POTENTIAL IS THE LARGEST

22 / ©2016 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

INSIGHTS: BEHAVIOR AND TECHNOLOGY-BASED OPPORTUNITIES OVERLAP

Source: Norton (Opinion Dynamics) 2013

23 / ©2016 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

SAVINGS BY END USE ACROSS STUDIES

BB Savings Ranking by End Use

Study	HVAC	Lighting	Office Computers & Equip.	Hot Water
Azar & Menassa (offices) 2014	1	3	2	?
Norton (C&I) 2013	2	1	?	?
Ehrhardt-Martinez (Comm.) 2015	1	1	1	2
Ehrhardt-Martinez (offices) 2015	1	2	3	4

TABLE OF CONTENTS

1. Overview of the Studies

2. Comparisons and Insights

3. Take-Aways

TAKE AWAYS

Technical BB Savings Potential =

- 21% in office buildings; 4 behaviors (Azar & Menassa 2014)
- 12-18% in C&I; 16 behaviors (Norton 2013)

Achievable BB Savings Potential =

- 7% in commercial buildings; up to 91 behaviors (Ehrhardt-Martinez 2015)
- 10% in office buildings: up to 91 behaviors (Ehrhardt-Martinez 2015)
- <1% in commercial buildings; 4 program interventions (Wikler 2016)

Variation is Size and Source of Savings:

- Savings estimates vary by building type, geography, size and vintage.
- Most important building types: offices, schools, retail healthcare, lodging
- Most important end uses: vary by building type and geography.

REFERENCES

- Azar, Elie and Carol C. Menassa. 2014. "A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks." *Energy Policy* 67: 459-472.
- Burke, Adam and Roger Baker 2008. "Measuring End-Use Technological and Behavioral Waste to Prioritize and Improve Program Design." In the proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings. Washington, DC: ACEEE.
- Ehrhardt-Martinez, Karen. 2016. "Behavior-based Energy Savings Opportunities in Commercial Buildings: Estimates for Four U.S. Cities." In the proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings. Washington, DC: ACEEE.
- Ehrhardt-Martinez, Karen. 2015. "Behaviour Wedge Profiles for Cities." In the proceedings of the ECEEE Summer Study on Energy Efficiency in Buildings. (Paper Number 3-483-15)
- Ehrhardt-Martinez, Karen. 2015. "Municipal Behavior Wedge Project: Methodology Report." Garrison, NY: Garrison Institute.
- Hong, Tianzhen and Hung-Wen Lin. 2013. "Occupant Behavior: Impact on Energy Use of Private Offices." (LBNL-6128E) Berkeley, CA: Lawrence Berkeley National Lab.
- Norton, William. 2013. "ComEd Residential and C&I Saturation / End-Use, Market Penetration & Behavioral Study." (March 20, 2013). Opinion Dynamics with Vermont Energy Investment Corporation and Mad Dash Field Services.
- Wikler, Greg; Sathe, Amul; Swamy, Surya; Ehrhardt-Martinez, Karen; Daftari, Aayush; Oztreves, Semih; Pierce, Julie; Menon, Carishma; and Jack Cullen. 2016. "AB802 Technical Analysis: Potential Savings Analysis."
 (Ref No.: 174655) Prepared for the California Public Utilities Commission.

DISCLAIMER

Notice Regarding Presentation

This presentation was prepared by Navigant Consulting, Inc. (Navigant) for informational purposes only. Navigant makes no claim to any government data and other data obtained from public sources found in this publication (whether or not the owners of such data are noted in this publication).

Navigant does not make any express or implied warranty or representation concerning the information contained in this presentation, or as to merchantability or fitness for a particular purpose or function. This presentation is incomplete without reference to, and should be viewed solely in conjunction with the oral briefing provided by Navigant. No part of it may be circulated, quoted, or reproduced for distribution without prior written approval from Navigant.

CONTACTS

KAREN EHRHARDT-MARTINEZ

Associate Director 303-942-1094 Karen.Ehrhardt.Martinez@Navigant.com

navigant.com

