

Peak-Coincident Demand Savings from Residential Behavior-Based Programs Jim Stewart, Ph.D.

Behavior, Energy, and Climate Change Conference November 19, 2013

Research

Issue

Electricity savings of PPL Electric behavior-based (BB) program during system peak hours

Approach

- Hourly energy-use data →Estimation of BB-program savings during specific times
- Regression analysis of hourly energy-use data
 - 20,000 PPL Electric customers and 44 million records

Main findings

- BB program saved about 2% of peak energy use
- Some savings were from air-conditioning measures
- Cost per kW of savings close to average cost for utility residential LM programs

Potential Role of BB Programs in Peak Load Management

- High marginal costs of supply during system peak hours
- U.S. utilities spent \$1.3 billion on load management (LM) programs (EIA, 2012)
 - Reduced peak energy use by 13.2 GW → ≈\$96/kW
- Residential BB programs may be able to help:
 - can target end-uses that contribute to system peaks
 - are scalable
 - reach customers not interested in participating in conventional LM programs

PPL Electric's Behavior and Education Program

- Implemented by Opower
- Primary objective was energy savings but demand savings count
- Delivered 6 energy reports annually to about 100,000 residential customers
 - Legacy Group: received first reports in 2010
 - Expansion Group: received first reports in 2011; includes past EE program participants
- Reports included personal energy-use analysis, peer comparison, and energy savings tips
 - Savings tips targeted some end uses that contributed to system peaks
- Implemented as a large field experiment
- In 2012-2013, saved 36,470 MWh or 2% and was cost-effective

Data

Randomly sampled treatment and control group homes

Analysis sample

Program population	Treatment Group (N)	Control Group (N)
Legacy	5,000	5,000
Expansion	5,000	5,000

- Collected data on hourly energy-use during summer 2012
- Verified there was balance in pre-program energy use between...
 - sampled treatment group and control group homes
 - sampled and non-sampled treatment (control) group homes

Peak Savings Estimation

- Panel regression of hourly kWh
 - Separate models for legacy and expansion groups
- Estimated savings during PPL Electric system peak hours
 - Defined as top 100 hours of utility system demand
 - Occurred during warm weekday afternoons or evenings
 - Air-conditioning loads main driver of system peaks
- Savings estimates are unbiased and robust because of program's experimental design
 - Hour fixed effects control for correlation between residential energy use and system peak hours

PEAK DEMAND SAVINGS ESTIMATES

System Peak Demand Savings Estimates

Note: Error bands show 90% confidence intervals. Standard errors are clustered on homes.

Other Findings

- System peak savings were about 2% of energy use
- Peak savings could have been achieved by:
 - Turning off one 60 or 80 watt light bulb; or
 - Reducing runtime of air conditioner by about 5 minutes per hour
- Sending energy reports to 9 homes (0.63 kW) yields same peak energy savings as cycling AC in one PPL Electric Peak Saver home
- PPL Electric saved 6.5 MW from BB program

SOURCES OF BEHAVIOR SAVINGS

SOME SUGGESTIVE EVIDENCE

Legacy Group Peak and Non-peak Savings

Note: Confidence interval estimated using standard errors clustered on homes.

Expansion Group Peak and Non-peak Hour Savings

Note: Confidence interval estimated using standard errors clustered on homes.

BB PROGRAM COST OF SAVINGS

Behavior and Education Program Demand Savings Costs

- Collected data on
 - PPL Electric Behavior and Education Program costs from Act 129 filings
 - U.S. utility DR program costs and peak load reductions in 2012 from EIA-861
 - Residential LM direct costs
 - Residential LM incentives
 - Residential LM actual peak reductions
- Compared BB-program and residential DR-program average cost of peak savings
- Note: Comparison ignores BB-program energy savings

Cost of Peak Demand Savings

Conclusions

- Hourly energy-use data enabled estimation of BBprogram savings during specific times
- BB program resulted in significant peak savings
- More research is needed, but some savings derived from air-conditioning measures
- PPL Electric BB program's average cost of kW savings close to average cost for utility LM programs
- May be possible to increase BB peak savings
 - Focus messaging and education more on peak energy use
 - Pair behavioral interventions with enabling technologies

