Scale and Metric Design as Choice Architecture Tools

Adrian R. Camilleri Richard P. Larrick

Center for Research on Environmental Decisions
EARTH INSTITUTE | COLUMBIA UNIVERSITY

Preferences are Constructed

- People are not always rational and often construct preferences on the fly (Payne et al., 1993).
 - Many examples: Framing, response mode, defaults, partitioning, number of options, etc.
- The choice architecture refers to the task and contextual features of a decision.
- Choice "architects" design the choice task and context and therefore influence decisions.
- Choice architects can "nudge" people's choices (Johnson et al., 2012; Thaler & Sunstein, 2008).
 - Label design

Basic Label Principles

- Basic principles of label design (Bettman et al., 1986):
 - Make important information more salient.
 - Use a common organizational scheme.
 - Use symbols that quickly convey concepts.
 - Present information that reduces cognition need.
 - Product price tag label (Russo et al., 1975; Russo, 1977).
 - Energy consumption labels (Anderson & Claxton, 1982).

Translated Attributes in Modern Labels

 "Translated attributes" are different metrics derived from one global dimension subject to simple monotonic scale transformations.

Research Questions

- How are consumer's decisions influenced by the presentation of different translated (i.e., highly correlated) attributes on labels?
- In the context of vehicle choice and the fuel economy label:
 - Which individual translation of metric/scale attracts the most weight in preference construction?
- Basic research approach: Hypothetical choice task
 - Ask participants to hypothetically chose between different pairs of vehicles comprising of a *cheap*, fuel *inefficient* model and an *expensive*, fuel *efficient* model.

Metric

- Metric fluency:
 - Information that is processed more fluently is believed to be more true and thus given more weight (Alter & Oppenheimer, 2009).
 - Cost information → More fluent → More efficient choices.
- Metric compatibility:
 - Consumers tend to process information in the format in which it is provided (Bettman & Kakker, 1977; Larrick & Soll, 2008).
 - Metrics given more weight when they match the problem-solving processes (Vessey, 1991; Fischer & Hawkins, 1993).
 - Cost information → Better match → More cost-minimizing choices.

Scale

- Scale expansion:
 - Differences perceived as larger when expressed on an expanded scale (Pandelaere et al., 2011; Burson, Larrick, & Lynch, 2009).
 - Expanded scale → Larger perceived differences → More efficient choices.
- Scale fluency:
 - Some scales are more familiar, processed more fluently, and allocated more weight (Alter & Oppenheimer, 2009; Lembregts & Pandelaere, 2013).
 - 100 miles → Familiar scale → More efficient choices.

	Model A	Model B
Cost of the vehicle in dollars:	\$20,520	\$23,520
Gallons of gas used per 100 miles:	5.3	4.3

- Please consider the vehicles to be equivalent in all other respects.
- Please assume that gas costs \$4/gallon.
- Which do you prefer?

	Model A	Model B
Cost of the vehicle in dollars:	\$20,520	\$23,520

- Please assume gas costs \$4/gallon.
- Which do you prefer?

Choice Set

Choice	Cheaper, inefficient model		Expensive, efficient model			
	Price	Gallons per 100 miles	Cost of fuel per 100 miles*	Price	Gallons per 100 miles	Cost of fuel per 100 miles*
1	\$18,000	5.0	\$20	\$21,000	4.0	\$16
2	\$23,999	5.6	\$22	\$26,999	4.2	\$17
3	\$27,299	4.8	\$19	\$32,299	3.4	\$14
4	\$19,520	5.3	\$21	\$21,520	3.8	\$15
5	\$16,898	5.9	\$24	\$24,898	3.7	\$15
6	\$21,477	6.3	\$25	\$25,477	3.6	\$14

^{*}Assuming \$4.00 per gallon of gas.

Methods

Participants:

- 424 Americans from Amazon's Mechanical Turk.
- 56% female.
- Mean age = 32.1 years (SD = 10.5).

Other measures:

 Environmental attitudes, political attitudes, discounting attitudes, numeracy, cognitive ability, driving behaviors, other demographics.

Preferences

Metric on Preferences

Scale on Preferences

Driving Behavior

Note: Total Intended Miles Driven in per 10,000 miles units.

Summary of Results

- People prefer fuel efficient vehicles more when fuel economy is expressed as the cost of fuel on a very expanded scale.
 - Metric fluency (Alter & Oppenheimer, 2009).
 - Metric compatibility (Fischer & Hawkins, 1993).
 - Scale expansion (Burson, Larrick, & Lynch, 2009).
 - Scale fluency (Lembregts & Pandelaere, 2013).
 - Anchoring

Conceptual Implications

- Consumers tend to give more weight to some attribute translations:
 - Problem-compatible, familiar metrics > Problemincompatible, unfamiliar metrics.
 - Larger, familiar scales > Smaller, unfamiliar scales.

Ongoing Work

- A more social scale expansion?
- Aggregation over potential collective behavior:
 - If you do X and so do 1000 others, then combined you will save Y.
- Planned field studies:
 - Sustainable Duke
 - Beyond Meat

Policy Implications

- People can make better decisions for themselves if provided with meaningful metrics – those that easily allow assessment of goal achievement and progression:
 - Provide decision-makers amidst a consumption decisions with cost information.
- People can make better decisions for society if efficiency and future savings associated with efficiency are emphasized:
 - Express efficiency information on an expanded,
 lifetime scale.

Scale and Metric Design as Choice Architecture Tools

Adrian R. Camilleri Richard P. Larrick

Center for Research on Environmental Decisions
EARTH INSTITUTE | COLUMBIA UNIVERSITY