

FLOODRISE: AN INTERDISCIPLINARY APPROACH TO LEVERAGE TECHNOLOGY FOR RESILIENCE

Beth Karlin, Ph.D.

Director, Transformational Media Lab

University of California, Irvine

bkarlin@uci.edu

1. **Technology and new media** are changing how people interact with our natural, built, and social worlds.

- 1. **Technology and new media** are changing how people interact with our natural, built, and social worlds.
- 2. There are **potential opportunities** to leverage these changes for pro-social / pro-environmental benefit.

- 1. **Technology and new media** are changing how people interact with our natural, built, and social worlds.
- 2. There are **potential opportunities** to leverage these changes for pro-social / pro-environmental benefit
- 3. A **psychological approach** provides a theoretical base and empirical methodology to study this potential.

- 1. **Technology and new media** are changing how people interact with our natural, built, and social worlds.
- 2. There are **potential opportunities** to leverage these changes for pro-social / pro-environmental benefit.
- 3. A **psychological approach** provides a theoretical base and empirical methodology to study this potential.

Mission:

Our lab studies how media is (and can be) used to transform individuals, communities, and systems.

- 1. **Technology and new media** are changing how people interact with our natural, built, and social worlds.
- 2. There are **potential opportunities** to leverage these changes for pro-social / pro-environmental benefit.
- 3. A **psychological approach** provides a theoretical base and empirical methodology to study this potential.

FLOODING BY THE NUMBERS

- Estimated global annual damage over \$1 trillion by 2050 (Hallegatte et al., 2013)
- Estimated losses in California \$300 billion MORE than an earthquake of the same probability (Porter et al. 2011)
- * "100 year" flood will become annual occurrence by 2050 (Tebaldi et al. 2012)

FLOODING AND BEHAVIOR

- Many factors (social, environmental, economic)
- May levels of decision-making (National, State, Local, Public)
- Many possible scenarios (e.g., models vary)
- Many possible "solutions" (development, restoration, response)

FLOODING AND NEW TECHNOLOGY

- × Only available over last 5 years or so
- × Builds on existing digital models of cities
- × Urban coastal flood hazard models pioneered at UCIrvine
- × Produces output at the scale of legal land parcels

FLOODRISE (RESILIENT INFRASTRUCTURE AND SUSTAINABLE ENVIRONMENTS) * We aim to:

- Improve access to credible information about flooding
- × Promote cost-effective responses to flooding hazards
- × Change the conversation about "climate change"
- × By creating a decision-support tool that is:
 - × Human-centered
 - × Sensitive to context
 - × Scalable
 - × Collaborative

FLOODRISE RESEARCH TEAM

- × Modeling Team
- × Social Ecology Team
- × Integration & Impact Team

FLOODRISE RESEARCH TEAM

× Modeling Team
× Social Ecology Team
× Integration & Impact Team

Brett Sanders Engineering

Jay Famiglietti Earth Systems Science Ed Balston Economics

Amir AghaKouchak Economics

FLOODRISE RESEARCH TEAM

Modeling Team
 Social Ecology Team
 Integration & Impact Team

Richard Matthew Political Science

Victoria Basolo Urban Planning David Feldman Public Policy Doug Houston GIS

RESEARCH TEAM

- × Modeling Team
- × Social Ecology Team

Integration & Impact Team

Abigail Reyes Director Sustainability Initiative Kimberly Serrano Project Manager Newport Beach Site Coordinator Dani Boudreau Tijuana Site Coordinator

FLOODRISE RESEARCH APPROACH

- × Engineering Team:
 - + Build parcel-scale flood models
- × Social Ecology Team:
 - Measure perceptions of flood risks and attitudes about appropriate responses

5

- + Craft and test communication strategies
- × Integration and Impact Team
 - + Work with stakeholders to identify cost-effective interventions

5 Engaging undergraduate and graduate students in all aspects of research to develop flood risk competence in the next generation of leaders

Richard Matthew, 10/16/2014

NEWPORT BEACH, CALIFORNIA

FEMA VS. FLOODRISE

HOUSEHOLD SURVEYS

- 1. Assess flood perception, experience, and preparedness
- 2. Identify promising information sources for future communication
- 3. Investigate responses to flood maps and test FloodRISE vs. FEMA map

FEMA Map Engineering Map

• 8-item scale (Karlin & Ford, 2013)

	Mean	SD	α
Usability Perception Scale			.84
1. I am able to get the information I need easily.	5.615	1.704	
2. I think the image is difficult to understand.	6.010	1.708	
3. I feel confident interpreting the information in this image.	5.971	1.579	
4. A person would need to learn a lot in order to understand this image.	5.909	1.682	
5. I gained information from this image that will benefit my life.	4.644	1.951	
6. I do not find this image useful.	5.577	1.952	
7. I think that I would like to use this image frequently.	3.168	1.950	
8. I would not want to use this image.	5.115	2.159	

• T-Test for individual items

	Мар Туре					
	FEMA		FloodRISE			
	М	SD	М	SD	ţ	p
Usability Perception Scale (average)	4.991	1.276	5.345	1.241	2.480	.014
I am able to get the information I need easily.	5.307	1.853	5.860	1.567	-2.269	.025
I gained information from this image that will benefit my life.	4.080	1.930	4.975	1.922	-3.321	.001
I would not want to use this image.	4.596	2.254	5.492	2.034	-3.019	.003

Findings:

37. Now that you have viewed this map, how would you rate your awareness of where flooding could occur in your community, on a scale of 1 (not aware) to 7 (very aware)?

Not aware 1	2	3	4	5	6	Very aware 7
0	0	0	\cap	\cap	0	0
0	0	0	0	0	0	0

			Мар	Туре				
	FEMA			FloodRISE				
	М	SD	a.	М	SD	a	t	R
Map_FloodAwareness	5.818	1.426	88	6.205	1.071	117	2.132	.035

Findings:

35. Has your understanding of risk changed as a result of seeing this map?

Decreased

Stayed the same

Please explain.

		Map	Туре			
	FEMA		FloodRISE			
	М	SD	М	SD	t	p
Visual info helpful	0.135	0.3435	0.246	0.4324	-2.078	.039
Not enough info	0.135	0.3435	0.049	0.2171	2.070	.040
See how flood affects	0.034	0.1815	0.107	0.3098	-2.142	.033

FLOODRISE OUTLOOK

- × NSF Funding for 2013-2107
- NSF proposa n revision to use citizen science to validate models and increase flood risk awareness
- Proposal submitted to add a site in South Korea
- Vision: A global network of experts in flood modeling and risk communication focused on combating coastal flooding in a changing climate

13 NSF proposal in progress to test crowdsourcing as an approach to model validation and raising flood risk awareness Richard Matthew, 10/16/2014

UCIRVINE

THANK YOU!

Beth Karlin, Ph.D.

Director, Transformational Media Lab University of California, Irvine bkarlin@uci.edu

