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Billing data is often used for efficiency and 
conservations studies 

Empirical assessments of efficiency / conservation programs  
•  Must control for outdoor temperature effects which vary among groups 
•  There are standard models for accounting for temperature effects:  

PRInceton Scorekeeping Method (PRISM) , Change point models (Fels 1988, Kissock 2002) 
 

Baselines of current Infrastructure/behavior, enabled by AMI 
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Estimated # of hours of AC use per 
house per year, (Dyson et al. 2014) 

Classification of cooling hours, and 
estimation of temperature response. 
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AMI data create potential for even more insights 
What do thermal models tell us  

about a residence? 

Thermal efficiency of infrastructure 

•  Effective thermal resistance 

Efficiency / Behavior 

•  Non-HVAC Energy Use 

•  HVAC Energy Use 

Behavior 

•  HVAC Schedule 

What could we ask about energy 
efficiency or conservation? 

•  Baseline current infrastructure 
efficiency and behavioral practices.  

•  Test hypotheses of  

•  Landlord/tenant effects on efficiency 
versus behavior 

•  Geographic indicators of efficiency 
versus behavior 

•  Cluster consumers to target efficiency 
programs.  

•  Explain differing energy use within 
similar populations.  
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Bias in thermal models from smart meters 
No measurement of indoor temperature or internal heat gains  

Implicitly assume that they are independent of outdoor 
temperature  

 
No estimate of thermal mass of the home, which may dampen 

the effect of a periodic outdoor temperature signal. 

Classification bias, 
Parameters are sensitive to classifications  

Classifications are sensitive to large deviations.  
Models are more likely to misclassify ambiguous readings, which can 

lead to systemic bias.  
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This work 

Evaluates a set of models (existing and novel) for their ability to 
identify thermal and behavioral properties from smart meter data, 

focus on bias in estimates 
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Detailed data 
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Thermostat Data ~ 4000 Residences  
5-min resolution 

3 summer months 

Thermostat: Room temp, Set point 

Power Meter: AC electricity use 

Pecan St.  
 

 25 Residences
5-min resolution 

12 months 

Power Meter: AC electricity use 
Power Meter: All other electricity use

Forecast.io Zip-code
1h resolution

Outdoor Temperature
Clearness Index

Data 

Non-AC (Pecan St.)

….Reduced to AMI data 

AC (Landis Gyr)

60 min time resolution, aggregated total building use  



Comparison Method 
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AC Energy Use  
Room Temperature 

Outdoor Temperature 
Solar Insolation 

Detailed Data (5-min) 

Total Energy Use  
Outdoor Temperature 

AMI-like Data (60-min) 

ARMA Model  
(Rabl, 1988) 

Set of AMI Data 
Models 

AC Energy Use  
AC State (ON/OFF) 

Ground Truth 

Eff. Thermal Resistance  
Ave. change point 

AC Energy Use  
AC State (ON/OFF) 

Eff. Thermal Resistance  
Ave. change point 

AMI Estimates 

Data Models Estimates 



AMI data Models  
Change point only models 
Similar to models used for energy efficiency evaluation (Fels, 1988, Kissock 2002) 
Change point can be used as a breakpoint or a a point to define HDH/CDH 
Change point is estimated by maximum likelihood (or minimal RMSE) 
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Change Point Only Intersecting Hourly Data Gaussian Errors 
Kernel Errors Cooling Intercept Classification Daily Data 



AMI data Models  
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Change Point Only Intersecting Hourly Data Gaussian Errors 
Kernel Errors Cooling Intercept Classification Daily Data 

Change  point + classification models 
Similar to models used in (Dyson et al. 2014;  Albert and Rajagopal, 2014) 
Observations above the change point may or may not be in a cooling state.  



AMI data Models  
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Change Point Only Intersecting Hourly Data Gaussian Errors 
Kernel Errors Cooling Intercept Classification Daily Data 

Intercept for cooling times 
Allows the cooling energy to be non-zero at the change point.  
Difficult to assign physical significance value when it is negative  



AMI data Models  
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Change Point Only Intersecting Hourly Data Gaussian Errors 
Kernel Errors Cooling Intercept Classification Daily Data 

Daily data  
Regress onto cooling degree hours instead temperature above change point 
May average out specious correlations due to diurnal effects  
 



AMI data Models  
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Change Point Only Intersecting Hourly Data Gaussian Errors 
Kernel Errors Cooling Intercept Classification Daily Data 

Kernel density errors  
Assess probability of residuals using a kernel density estimator.  
Reduces the effect of outliers on the classification of ON/OFF.  



RESULTS 
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Prediction of Daily AC Energy Use 
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•  Including classifications greatly reduces errors.  

•  Lowest RMSE from hourly data with Normal errors 

•  Using Kernel errors raises RMSE slightly  



Prediction of Daily AC Energy Use 
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•  The mean error displays whether models are biased in a specific direction 

•  Kernel error densities reduce bias, though they increase the average error 

•  Least biased model for predicting daily AC energy use 



AC ON/OFF, Hourly  
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•  Percent of “AC ON”  classifications that are correct 

•  Percent of “AC ON” times that are classified as “ON” 



Thermal Resistance and Change points 
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•  Change point only models choose high change points 
and slopes  

•  Classification models choose low change points and 
slopes  



Thermal Resistance and Change points 
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•  Models with kernel density errors perform with the least 
bias 



Concluding Remarks 
Minimizing square or absolute errors may not give the 

best models  
 

Additional detail is not always helpful. 
 

Best arrangement we’ve found so far… 
Endogenously classify readings by cooling mode, and to use a kernel 

density to estimate error distribution shapes.  
 

Enabling new future research 
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