AMI DATA FOR ENERGY EFFICIENCY AND CONSERVATION

Michaelangelo Tabone and Duncan Callaway Energy and Resources Group University of California, Berkeley m.tabone@berkeley.edu

Billing data is often used for efficiency and conservations studies

Empirical assessments of efficiency / conservation programs

- Must control for outdoor temperature effects which vary among groups
- There are standard models for accounting for temperature effects: PRInceton Scorekeeping Method (PRISM), Change point models (Fels 1988, Kissock 2002)

Baselines of current Infrastructure/behavior, enabled by AMI

Classification of cooling hours, and estimation of temperature response.

Estimated # of hours of AC use per house per year, (Dyson et al. 2014)

AMI data create potential for even more insights

What do thermal models tell us about a residence?

Thermal efficiency of infrastructure

- Effective thermal resistance
- **Efficiency / Behavior**
- Non-HVAC Energy Use
- HVAC Energy Use

Behavior

HVAC Schedule

What could we ask about energy efficiency or conservation?

- Baseline current infrastructure efficiency and behavioral practices.
- Test hypotheses of
 - Landlord/tenant effects on efficiency versus behavior
 - Geographic indicators of efficiency versus behavior
- Cluster consumers to target efficiency programs.
- Explain differing energy use within similar populations.

Bias in thermal models from smart meters

No measurement of indoor temperature or internal heat gains Implicitly assume that they are **independent** of outdoor temperature

No estimate of thermal mass of the home, which may dampen the effect of a periodic outdoor temperature signal.

Classification bias,

Parameters are sensitive to classifications Classifications are sensitive to large deviations. Models are more likely to misclassify ambiguous readings, which can lead to systemic bias.

This work

Evaluates a set of models (existing and novel) for their ability to identify thermal and behavioral properties from smart meter data, focus on **bias** in estimates

Data

6

Detailed data

Thermostat Data	~ 4000 Residences	Thermostat: Room temp, Set point Power Meter: AC electricity use			
	5-min resolution 3 summer months				
Pecan St.	25 Residences 5-min resolution 12 months	Power Meter: AC electricity use Power Meter: All other electricity use			
Forecast.io	Zip-code 1h resolution	Outdoor Temperature Clearness Index			

....Reduced to AMI data

Method

7

Comparison Method

Change point only models

Similar to models used for energy efficiency evaluation (Fels, 1988, Kissock 2002) Change point can be used as a breakpoint or a a point to define HDH/CDH Change point is estimated by maximum likelihood (or minimal RMSE)

Change point + classification models

Similar to models used in (Dyson et al. 2014; Albert and Rajagopal, 2014) Observations above the change point may or may not be in a cooling state.

Intercept for cooling times

Allows the cooling energy to be non-zero at the change point. Difficult to assign physical significance value when it is negative

Daily data

Regress onto cooling degree hours instead temperature above change point May average out specious correlations due to diurnal effects

Kernel density errors

Assess probability of residuals using a kernel density estimator. Reduces the effect of outliers on the classification of ON/OFF.

12/10/14	Results	13

RESULTS

Prediction of Daily AC Energy Use

Results

Prediction of Daily AC Energy Use

Thermal Resistance and Change points

changepoint only models					changepoint r classification models					
No Cooling Intercept							Cooling Intercept			
Hourly Daily		Hourly		Daily		Hourly		Daily		
Normal Kernel	Normal	Kernel	Normal	Kernel	Normal	Kernel	Normal	Kernel	Normal	Kernel

Thermal Resistance and Change points

Concluding Remarks

Minimizing square or absolute errors may not give the best models

Additional detail is not always helpful.

Best arrangement we've found so far...

Endogenously classify readings by cooling mode, and to use a kernel density to estimate error distribution shapes.

Enabling new future research

Thank You

National Science Foundation Graduate Research Fellowship

Lawrence Berkeley National Laboratory Sila Kiliccote Emre Can Kara

Fellow Berkeley Students

- Mark Dyson
- Sam Borgeson
- Peter Alstone
- Imran Sheik