ACTUAL RESULTS WILL VARY
FIVE QUESTIONS

1. Why eco-driving?
2. What are eco-driving behaviors?
3. How much do they save?
4. How are they promoted?
5. What is a policymaker to do?
1. WHY ECO-DRIVING?

- **Social Goals**
 - Fuel economy
 - U.S. Corporate Average Fuel Economy (CAFE) standards
 - Emissions: Clean air and climate
 - Local attainment plans
 - Zero emission vehicle credits
 - Safety
 - Social cost of traffic accidents

- **Private Goals**
 - Private cost: Fuel, accidents
 - Self-identity: Efficient, thrifty, environmentally-conscious
2. WHAT ARE ECO-DRIVING BEHAVIORS?

Premise: Behaviors excluded by US CAFE test procedures

- Sources of variation in “Actual results will vary”?

- What do we mean by “behavior”?
 - A behavior analytic approach
 - Function: its effect/what it does (most important)
 - Topography: its observable form/what it looks like
 - Context: who emits the behavior, when, and where
Categories of Eco-Driving Behavior

<table>
<thead>
<tr>
<th>Category</th>
<th>Function: Why</th>
<th>Topography: What</th>
<th>Context: Who, when, where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving</td>
<td>Operate the vehicle to provide mobility services</td>
<td>Accelerating; cruising; decelerating; waiting; parking</td>
<td>Driver, en route, in-vehicle</td>
</tr>
<tr>
<td>Cabin Comfort</td>
<td>Comfort, communications, entertainment</td>
<td>Using HVAC, windows, auxiliary electronics</td>
<td>Driver and passengers; en route; in vehicle</td>
</tr>
<tr>
<td>Trip Planning</td>
<td>Routing from point A to point B</td>
<td>Selecting travel routes and time (road type, grade, right turns, congestion, trip-chaining)</td>
<td>Driver; pre-trip and en route; in vehicle</td>
</tr>
<tr>
<td>Load Management</td>
<td>Be prepared for cargo and passengers</td>
<td>Managing cargo weight and aerodynamics (racks, etc.)</td>
<td>Driver or surrogate; pre-trip; home</td>
</tr>
<tr>
<td>Fueling</td>
<td>Fuel vehicle</td>
<td>Selecting fuel; preventing evaporation; PEV charging (frequency, level, and source)</td>
<td>Driver or surrogate; pre-trip(s); gas or charging station</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Maintain vehicle</td>
<td>Changing oil; selecting oil; inflating tires; selecting tires; getting engine tuned</td>
<td>Driver, surrogate, or professional; intervals based on use; auto shop</td>
</tr>
</tbody>
</table>
3. HOW MUCH CAN ECO-DRIVING SAVE?

\[I = \sum \left(t \cdot \frac{p}{n} \right) \]

I = impact
\(t \) = technical potential (savings impact of the behavior)
\(p \) = behavioral plasticity: proportion of population that can be induced to take the action
\(n \) = total population that could possibly take the action
\(k \) = each eco-driving behavior

Adapted from Stern, 2011, *American Psychologist*
Sivak and Schoettle, 2012, *Transport Policy*

- Estimates *technical potential* \((t) \) for multiple behaviors \((k > 1) \)
- *Neglecting* eco-driving = 45% *decrease* in fuel economy
 - Most influential behaviors: **Driving**
 - “Aggressive driving”
 - Including frequency + intensity of pedal use; not using cruise control
 - Cruising speed (particularly excessively high speeds)
HOW MUCH CAN ECO-DRIVING SAVE?

Our review of 40 empirical studies of eco-driving, driving behavior

- Average impact of eco-driving interventions = 9% increase in fuel economy
 - Estimate better reflects plasticity, but only for a subset of behaviors (k)
 - Three most commonly measured (variously operationalized):
 1. Accelerating
 2. Cruising
 3. Decelerating

National Center for Sustainable Transportation
 HOW MUCH CAN ECO-DRIVING SAVE?

The path to better savings estimates

• Define and measure eco-driving behavior!
 • 32/40 studies measured fuel economy
 • Only 24/40 studies measured behavior
• Define and measure eco-driving behaviors consistently across studies
• More research on network level impacts in different contexts
 • Alam & McNabola, 2012, *Transport Policy*

\[I = \sum (t_{\text{potential}} \times p_{\text{population}}^k) \]
Most research targets **driving** behaviors

Most common strategy: In-vehicle feedback
- 27/40 studies reviewed
 - Average 5.6% improvement in fuel economy

Other strategies include:
- Training
 - In-vivo coaching
 - Verbal instruction
HOW IS ECO-DRIVING PROMOTED?

- Feedback is more effective when it:
 - aligns with driver’s goals, e.g., to get around faster, save money, etc.
 - is adaptive, becoming more challenging as the driver progresses

- Other influential features include:
 - specificity of targeted behaviors
 - mode of interface, e.g., haptic or visual

National Center for Sustainable Transportation
HOW IS ECO-DRIVING PROMOTED?

The path to more effective eco-driving feedback

- Meta-analysis of literature
- Systematic comparative research
 - Findings from the few comparative studies are singular
 - Map well-defined behaviors onto well-defined feedback types
 - Most studies are devoid of behavioral theory (re: design and measurement)
 - Address for whom and in what contexts feedback works for which behaviors
- Assessment of commercially available in-vehicle feedback
5. WHAT IS A POLICYMAKER TO DO?

- Standardized test procedures, e.g., CAFE, serve useful purposes
- Be careful of promises of energy and emissions outcomes
 - What behaviors?
 - Is $k > 1$?
 - Enacted by whom, where, and when?
 - Who is the population (n); how many of them will take up the behavior (p)?
 - Not just technical potential
 - What are the distributions of outcomes?
 - Across behaviors (functions, typologies, contexts), promotions,
 ...and individual driver-owner-buyers
 - What are the aggregate impacts over time?
- Do something