

Comparison of Methods for Estimating Energy Savings from Home Energy Reports

Brian Arthur Smith, Pacific Gas and Electric Company Josh Schellenberg, Nexant

Key Research Question: How Do Estimates from Randomized Control Trials Compare to those Derived from Other Methods?

Current Situation

- Home energy reports (HERs) have gained <u>significant traction</u> in the utility industry
- Preferred evaluation method is the randomized controlled trial (RCT), but large control groups of nonparticipants <u>limit the potential for</u> <u>behavioral programs</u>
- Alternative statistical methods show
 considerable promise
 for
 behavioral program evaluation, but
 their statistical validity relative to the
 RCT has yet to be tested rigorously

Study Objective

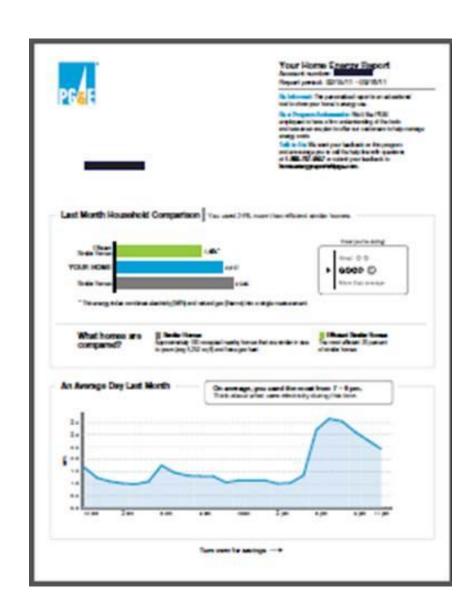
- Leverage data from PG&E's large program
- Test promising alternative methods:
 - Bayesian Structured Time Series (BSTS)
 - Regression Tree with Random Effects (RE-EM Tree)
 - Propensity Score Matching (PSM)
- Compare the results of a large, multi-year RCT evaluations to the energy savings estimates produced by alternative methods

Overview of PG&E's Home Energy Reports Program

- Launched in 2011 with two experiments
- Expanded steadily since then
- Currently 1.2 million+ residential customers receiving HERs in a dozen unique experiments
- HERs account for <u>majority of savings</u> in PG&E's residential EE portfolio

In this analysis:

- Approximately 75,000 treatment and 75,000 control customers
- Participants in one of the first HER RCTs at PG&E (the "Gamma" wave)
- Analyzed over the course of three posttreatment years (2012-2014)



Savings Estimates Resulting from the RCT Approach at PG&E

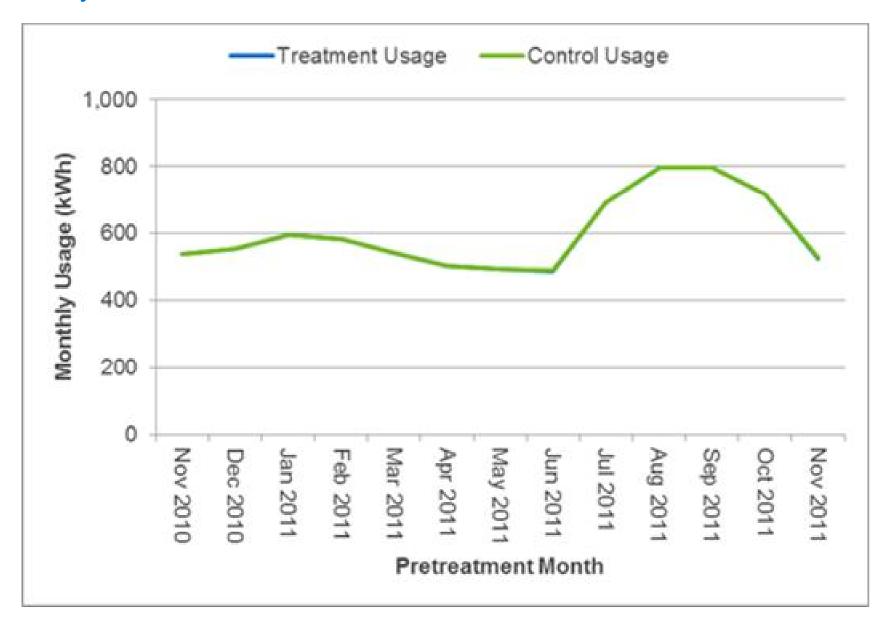
Estimation Methodology	Percent Savings Estimates			Monthly Savings Estimates (kWh)	
	2012	2013	2014	Low	High
Randomized Controlled Trial (RCT)	1.16%	1.58%	1.69%	5.9	12.2

- PG&E's HER program lends itself well to an RCT because it is an opt-out design for which random assignment is straightforward
- Given the random assignment, the basic approach for estimating savings is to simply compare the consumption of treatment and control customers using <u>difference-in-differences</u>
- Implemented using a <u>panel regression model</u> that included an indicator variable for month, a treatment and a customer-level indicator variable (fixed effect)

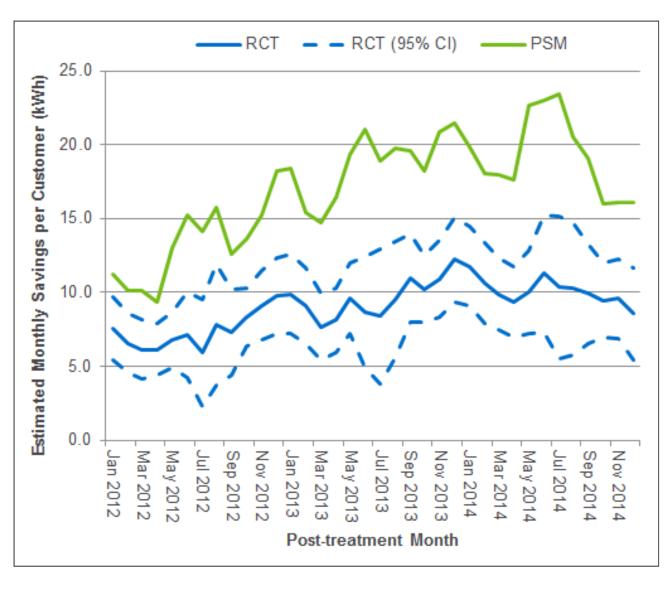
Propensity Score Matching is a Typical Quasi-Experimental Approach

- Propensity Score Matching (PSM) is commonly used to estimate impacts for demand response programs
- Developed a matched control group from a <u>large dataset of non-participants</u> (approximately 500,000 customers)
- Each of the 75,000 treatment customers was <u>matched</u> to a customer in the large dataset of non-participants using PSM
- Variables included in the propensity score model were simply the <u>pretreatment monthly usage</u> amounts for November 2010 through October 2011
- An additional constraint was that each treatment customer had to be matched from <u>within the same weather station area</u>
- Primary disadvantage of PSM is unobserved selection bias

PSM Uses Pretreatment Usage as a Basis for Verifying the Similarity of the Treated and Matched Controls



PSM Approach Produced Similar Estimates to RCT, But Outside of the 95% Confidence Interval for the RCT (dotted lines)



- PSM monthly savings estimates vary from <u>9.4</u>
 kWh to 23.4 kWh
- Nonetheless, the PSM percent savings estimate is nearly
 <u>double</u> the RCT estimate in 2014
- Upward bias already shows up in the <u>first</u> post-treatment month

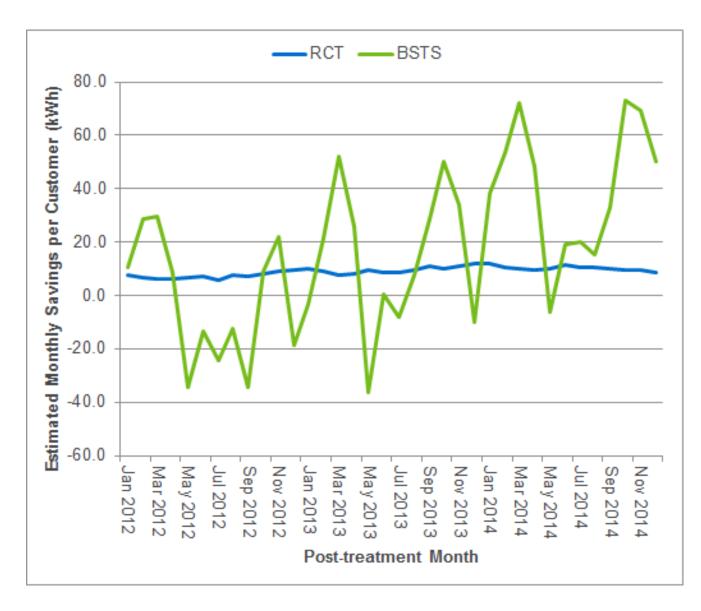
Bayesian Structured Time Series Allows for Modeling Complex, Non-Linear Relationships

- Bayesian Structured Time Series (BSTS) analysis was conducted using an <u>R package</u> called CausalImpact using a model with the following variables (including their higher powers and interactions)
 - Average kWh for the treatment group only
 - Heating degree days (HDD)
 - Cooling degree days (CDD)
 - Relative humidity
 - Monthly seasonal effect

Disadvantages of BSTS:

- Complexity (black box)
- Statistical learning models have a risk of "overfitting", whereby too much importance is placed on random patterns in the data, especially when relatively few data points are available

BSTS Produced "Noisy" Results

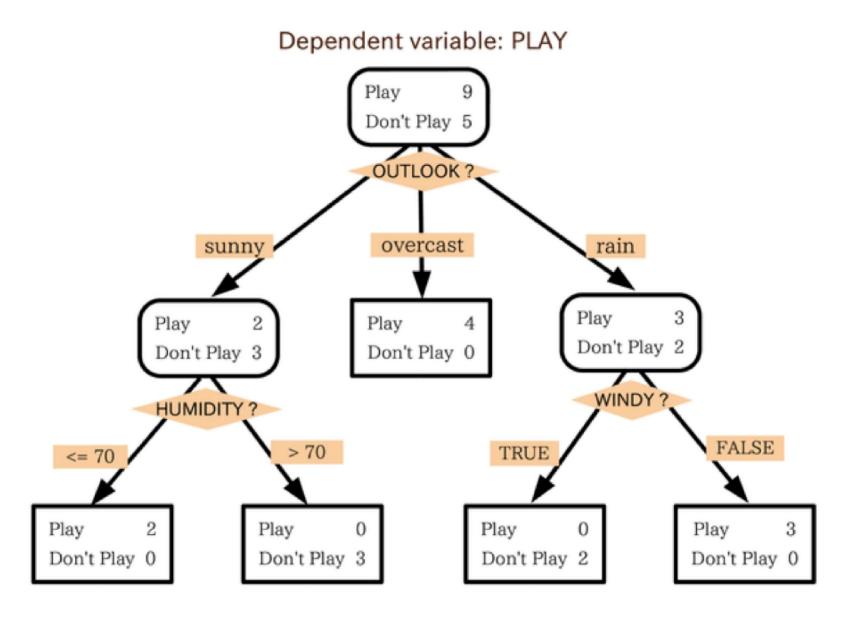


- BSTS monthly savings estimates vary from as low as negative 36.4 kWh to as high as 73.1 kWh
- In 2014, the BSTS percent savings estimate is nearly
 four times higher than the RCT estimate

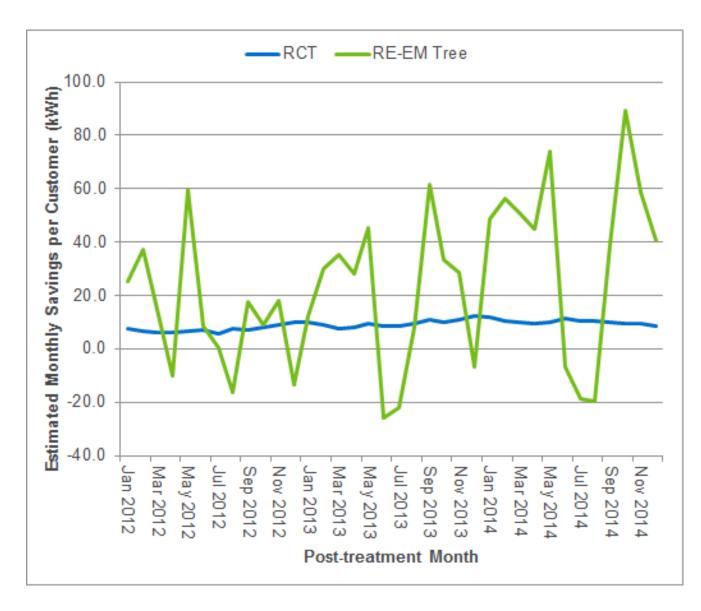
Regression Tree with Random Effects Offers the Flexibility of Tree-Based Methods with the Structure of Random Effects Models

- Tree-based models are rule-based models that partition data based on one or more nested <u>if-then statements</u> applied to the independent variables
- Regression Tree with Random Effects (RE-EM) Tree model in this case used <u>similar variables</u> to those of the BSTS model
- Disadvantages of tree-based models
 - Prone to model instability
 - Poor predictive performance if the relationship between predictors and response cannot be adequately defined, especially when relatively few data points are available

Tree-Based Model Examples



RE-EM Tree Produced "Noisy" Results



- RE-EM Tree monthly savings estimates vary from as low as negative 25.8 kWh to as high as 89.3 kWh
- In 2014, the RE-EM
 Tree percent savings estimate is nearly
 four times higher
 than the RCT estimate

Alternative Methods Tested Produced Different Savings Estimates

Estimation Methodology	Percent Savings Estimates			Monthly Savings Estimates (kWh)	
	2012	2013	2014	Low	High
Randomized Controlled Trial (RCT)	1.16%	1.58%	1.69%	5.9	12.2
Bayesian Structured Time Series (BSTS)	-0.40%	2.21%	6.43%	-36.4	73.1
Regression Tree with Random Effects (RE-EM Tree)	2.03%	3.07%	6.08%	-25.8	89.3
Propensity Score Matching (PSM)	2.08%	3.07%	3.21%	9.4	23.4

- PSM performs best, but it <u>does not resolve the issue</u> of requiring a large group of customers who do not receive the treatment
- Changes in usage and weather conditions led to a <u>large upward</u> <u>bias</u> in the 2014 BSTS and RE-EM estimates, given that both models primarily rely on temperature to estimate usage

Follow-on Research Ideas

- Further research based on several years of hourly interval data is required to <u>conclusively determine</u> whether these models are (or are not) a viable alternative to the RCT
 - Nonetheless, a model that primarily relies on temperature patterns may go awry after several years of treatment
 - Key advantage of the PSM approach is that it does not rely on modeling a relationship between temperature and usage, which most likely explains why the PSM results track most closely to the RCT results over multiple years
- Conduct a similar comparative methods analysis for an <u>opt-in</u> <u>program</u>

Acknowledgements

- Co-authors
 - Aimee Savage, Nexant, San Francisco, CA
 - Marshall Blundell, Nexant, New York, NY
 - Jonathan Cook, Nexant, Washington, DC
 - Brian Arthur Smith, Pacific Gas and Electric Co., San Francisco, CA
- For their helpful input, we would also like to thank the following people
 - Hunt Allcott, New York University
 - Alex Orfei, Opower
 - Ken Agnew, DNV GL
 - Peter Franzese, California Public Utilities Commission (CPUC)
 - Dan Bush, CPUC
 - IEPEC co-panelists and moderator