Comparison of Methods for Estimating Energy Savings from Home Energy Reports

Brian Arthur Smith, Pacific Gas and Electric Company
Josh Schellenberg, Nexant

October 6, 2015
Key Research Question: How Do Estimates from Randomized Control Trials Compare to those Derived from Other Methods?

<table>
<thead>
<tr>
<th>Current Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Home energy reports (HERs) have gained significant traction in the utility industry</td>
</tr>
<tr>
<td>▪ Preferred evaluation method is the randomized controlled trial (RCT), but large control groups of non-participants limit the potential for behavioral programs</td>
</tr>
<tr>
<td>▪ Alternative statistical methods show considerable promise for behavioral program evaluation, but their statistical validity relative to the RCT has yet to be tested rigorously</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Leverage data from PG&E’s large program</td>
</tr>
<tr>
<td>▪ Test promising alternative methods:</td>
</tr>
<tr>
<td>▪ - Bayesian Structured Time Series (BSTS)</td>
</tr>
<tr>
<td>▪ - Regression Tree with Random Effects (RE-EM Tree)</td>
</tr>
<tr>
<td>▪ - Propensity Score Matching (PSM)</td>
</tr>
<tr>
<td>▪ Compare the results of a large, multi-year RCT evaluations to the energy savings estimates produced by alternative methods</td>
</tr>
</tbody>
</table>
Overview of PG&E’s Home Energy Reports Program

- Launched in 2011 with two experiments
- Expanded steadily since then
- **Currently 1.2 million+** residential customers receiving HERs in a dozen unique experiments
- HERs account for **majority of savings** in PG&E’s residential EE portfolio

In this analysis:
- Approximately 75,000 treatment and 75,000 control customers
- Participants in one of the first HER RCTs at PG&E (the “Gamma” wave)
- Analyzed over the course of three post-treatment years (2012-2014)
Savings Estimates Resulting from the RCT Approach at PG&E

PG&E’s HER program lends itself well to an RCT because it is an **opt-out design** for which random assignment is straightforward.

Given the random assignment, the basic approach for estimating savings is to simply compare the consumption of treatment and control customers using **difference-in-differences**.

Implemented using a **panel regression model** that included an indicator variable for month, a treatment and a customer-level indicator variable (fixed effect).

<table>
<thead>
<tr>
<th>Estimation Methodology</th>
<th>Percent Savings Estimates</th>
<th>Monthly Savings Estimates (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>2013</td>
</tr>
<tr>
<td>Randomized Controlled Trial (RCT)</td>
<td>1.16%</td>
<td>1.58%</td>
</tr>
</tbody>
</table>
Propensity Score Matching is a Typical Quasi-Experimental Approach

- Propensity Score Matching (PSM) is commonly used to estimate impacts for demand response programs
- Developed a matched control group from a **large dataset of non-participants** (approximately 500,000 customers)
- Each of the 75,000 treatment customers was **matched** to a customer in the large dataset of non-participants using PSM
- Variables included in the propensity score model were simply the **pretreatment monthly usage** amounts for November 2010 through October 2011
- An additional constraint was that each treatment customer had to be matched from **within the same weather station area**
- **Primary disadvantage** of PSM is unobserved selection bias
PSM Uses Pretreatment Usage as a Basis for Verifying the Similarity of the Treated and Matched Controls
PSM Approach Produced Similar Estimates to RCT, But Outside of the 95% Confidence Interval for the RCT (dotted lines)

- PSM monthly savings estimates vary from 9.4 kWh to 23.4 kWh
- Nonetheless, the PSM percent savings estimate is nearly double the RCT estimate in 2014
- Upward bias already shows up in the first post-treatment month
Bayesian Structured Time Series Allows for Modeling Complex, Non-Linear Relationships

- Bayesian Structured Time Series (BSTS) analysis was conducted using an **R package** called **CausalImpact** using a model with the following variables (including their higher powers and interactions)
 - Average kWh for the treatment group only
 - Heating degree days (HDD)
 - Cooling degree days (CDD)
 - Relative humidity
 - Monthly seasonal effect

- **Disadvantages** of BSTS:
 - Complexity (black box)
 - Statistical learning models have a risk of “overfitting”, whereby too much importance is placed on random patterns in the data, especially when relatively few data points are available
BSTS Produced “Noisy” Results

- BSTS monthly savings estimates vary from as low as negative 36.4 kWh to as high as 73.1 kWh.
- In 2014, the BSTS percent savings estimate is nearly four times higher than the RCT estimate.
Regression Tree with Random Effects Offers the Flexibility of Tree-Based Methods with the Structure of Random Effects Models

- Tree-based models are rule-based models that partition data based on one or more nested **if-then statements** applied to the independent variables

- Regression Tree with Random Effects (RE-EM) Tree model in this case used **similar variables** to those of the BSTS model

- **Disadvantages** of tree-based models
 - Prone to model instability
 - Poor predictive performance if the relationship between predictors and response cannot be adequately defined, especially when relatively few data points are available
Tree-Based Model Examples

RE-EM Tree Produced “Noisy” Results

- RE-EM Tree monthly savings estimates vary from as low as negative 25.8 kWh to as high as 89.3 kWh.
- In 2014, the RE-EM Tree percent savings estimate is nearly four times higher than the RCT estimate.
Alternative Methods Tested Produced Different Savings Estimates

<table>
<thead>
<tr>
<th>Estimation Methodology</th>
<th>Percent Savings Estimates</th>
<th>Monthly Savings Estimates (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>2013</td>
</tr>
<tr>
<td>Randomized Controlled Trial (RCT)</td>
<td>1.16%</td>
<td>1.58%</td>
</tr>
<tr>
<td>Bayesian Structured Time Series (BSTS)</td>
<td>-0.40%</td>
<td>2.21%</td>
</tr>
<tr>
<td>Regression Tree with Random Effects (RE-EM Tree)</td>
<td>2.03%</td>
<td>3.07%</td>
</tr>
<tr>
<td>Propensity Score Matching (PSM)</td>
<td>2.08%</td>
<td>3.07%</td>
</tr>
</tbody>
</table>

- PSM performs best, but it **does not resolve the issue** of requiring a large group of customers who do not receive the treatment.
- Changes in usage and weather conditions led to a **large upward bias** in the 2014 BSTS and RE-EM estimates, given that both models primarily rely on temperature to estimate usage.
Follow-on Research Ideas

- Further research based on several years of hourly interval data is required to *conclusively determine* whether these models are (or are not) a viable alternative to the RCT
 - Nonetheless, a model that primarily relies on temperature patterns may go awry after several years of treatment
 - Key advantage of the PSM approach is that it does not rely on modeling a relationship between temperature and usage, which most likely explains why the PSM results track most closely to the RCT results over multiple years

- Conduct a similar comparative methods analysis for an **opt-in program**
Acknowledgements

- **Co-authors**
 - Aimee Savage, Nexant, San Francisco, CA
 - Marshall Blundell, Nexant, New York, NY
 - Jonathan Cook, Nexant, Washington, DC
 - Brian Arthur Smith, Pacific Gas and Electric Co., San Francisco, CA

- **For their helpful input, we would also like to thank the following people**
 - Hunt Allcott, New York University
 - Alex Orfei, Opower
 - Ken Agnew, DNV GL
 - Peter Franzese, California Public Utilities Commission (CPUC)
 - Dan Bush, CPUC
 - IEPEC co-panelists and moderator