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• Behavior Analytics: combine behavioral theories 
with cutting-edge data science

• Interpret meter data as product of preferences 
and behaviors

 How should we group household energy behaviors?

 When do households use most of their energy? 
Peaks? 

 How diverse are customer load shapes?

 Etc.
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Our solution: Behavior Analytics
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Project Overview: Data
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• One utility, residential customers

• Hourly smart meter data 

• 100,000 households, 2.5 years

• Some survey data
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 Identify a finite set (aka dictionary) of representative load shapes that best 
describe all observed shapes

 Interpret these representative shapes in terms of scheduling, occupancy, 
equipment ownership, and patterns of human behavior
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• A load shape is the 
pattern created by 24 
hours of demand 
data.

• Shapes are produced 
by patterns of 
occupancy, 
equipment 
ownership, and 
behavior
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Defining Load Shapes

Flat/unoccupied Solar Morn/work/eve

Out for lunch? AC dominated?

Active at night?
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Clustering approach
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Suitable parameters: 
• Error threshold
• Violation rate30M customer-days

99 representative clusters/shapes 
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Top 12 Clusters
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Cluster coverage



10/26/2016

3

9

Can we create customer groups?
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Number of Unique Shapes

summer 2011 (pre-treatment period)
non-holiday weekdays
100,249 customers

Distribution of Shapes per Customer
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A few single-person HHs

Percent of Most Common Shape-Groups

Peak - Active Daytime - Active Daytime - Inactive Evening - Active

Evening - Inactive Morning - Inactive Night - Inactive 2 - Evening - Active

Energy “personalities”
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Breakdown of shape characteristics

= “Active” during peak hours
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Peak timing and magnitude
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Seasonal load shape diversity
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Temperature driven load shape diversity

Contact:
Sam Borgeson
sam@convergenceda.com

Ling Jin
ljin@lbl.gov
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Clustering Results

• Applied clustering to pre-treatment year: 

 ~ 105 customers, ~3x107 load shapes (customer-days)

• 99 representative clusters/shapes 

 30% violation rate to error threshold 0.3.

% of shapes by count for each representative clusters

Representative clusters sorted by counts
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99 Load Shape Clusters
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Top 6 shapes by season
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Weekday vs. Weekend
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Normalization Flattens Load Shapes

Normalization
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99 Load Shapes: Now What?
99 Load Shapes: Now What?
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• Distill 99 into more usable groupings

 How should they be grouped? 

• Behavioral dimensions in TOU context:

– Number of peaks

– Timing of peaks

– Activity level during TOU period

• Can we blend qualitative intuition with 
data-driven processes?

99 Load Shapes: Now What?
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1. Find breaks 
in data 

2. Select high 
activity 
periods

3. Find local 
maxima

4. Group load 
shapes into 
descriptive 
categories
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Examples:

• “Consistent” HHs = customers with only 1 or 2 
shapes over all summer, non-holiday 
weekdays
 Typically HHs with only 1 or 2 adults in the home

• What increases variation in a customer’s 
number of shape-groups? 
 Kids

 Electric Dryer
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Can we create customer groups?

• How to assign a household to a group?

 How different are the groups?

 How consistent (i.e., reliable) are HHs?

=> Further consolidation of shapes

• Are there any useful patterns via survey 
responses?

• How much does weather matter?

 What is the distribution of shapes on event-like days?

• Are there patterns by day of week?
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Next Steps

Test of k-means 
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