META-REVIEW OF BEHAVIOR-BASED ENERGY-SAVINGS POTENTIAL ESTIMATES FOR COMMERCIAL BUILDINGS

OCTOBER 22, 2016
Buildings would work perfectly if it weren’t for the people in them.

--Anonymous, ACEEE Conference, circa 1993
Simulations of occupant behavior in private offices show that occupants who are proactive in saving energy … consume 50% less energy than average occupants.

-- Hong and Lin 2013
Behavior-Based Savings Potential: Residential

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus:</td>
<td>Carbon Emissions</td>
<td>Energy Savings Opportunities</td>
<td>Energy Savings</td>
</tr>
<tr>
<td>Savings</td>
<td></td>
<td></td>
<td>Opportunities</td>
</tr>
<tr>
<td>Scope:</td>
<td>17 Household</td>
<td>110 HH Actions (Roughly)</td>
<td>27 HH Actions</td>
</tr>
<tr>
<td>Actions</td>
<td></td>
<td></td>
<td>(Roughly)</td>
</tr>
<tr>
<td>Potential Savings:</td>
<td>20% (of HH Direct</td>
<td>22%</td>
<td>30%</td>
</tr>
<tr>
<td>Residential Sector</td>
<td>Emissions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Savings:</td>
<td>7.4% (of National</td>
<td>9%</td>
<td>11%</td>
</tr>
<tr>
<td>National</td>
<td>Emissions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period to Achieve Max.</td>
<td>10 years</td>
<td>5 to 8 years</td>
<td>N/A</td>
</tr>
<tr>
<td>Annual Savings</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conservative estimates for Residential and Personal Transport only.
BEHAVIOR-BASED SAVINGS POTENTIAL: COMMERCIAL

But what do we know about the energy savings that could be achieved via changes in *occupant* and *operator* behaviors in *commercial* buildings?

Meta-Review
TABLE OF CONTENTS

1. Overview of the Studies
2. Comparisons and Insights
3. Take-Aways
STUDIES OF BEHAVIORAL POTENTIAL

Where we looked:

- Journal articles
- Conference proceedings: ACEEE, ECEEE
- Conference presentations: BECC

The studies we found:

1 – Azar & Menassa 2014
3 – Norton et al. 2013 / Burke & Baker 2008
4 – Wikler et al. 2016
HIGH-LEVEL FINDINGS

4 - 91

Occupant & operator behaviors

<1-7%

Achievable Potential

12-21%

Technical Potential
MEASURES OF BEHAVIOR POTENTIAL

What do we mean by Potential?

Technical Potential: The amount of energy savings that would be possible if ALL relevant opportunities to improve energy efficiency are taken immediately.

Achievable Potential: The energy efficiency savings that could be expected in response to specific barriers, incentives, influences and other factors that determine participation.

Accounts for eligibility and likely participation rates
"A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks"

Energy Policy 67 (2014)

Method: Commercial building energy modeling is used to emulate existing building conditions. Related studies in literature are used in the building energy modeling process to quantify the energy savings potential from improved building operations. Finally, sampling weights are used to generalize the obtained results to the entire stock of buildings under study.

<table>
<thead>
<tr>
<th>Study</th>
<th>Scope</th>
<th>No.</th>
<th>Types</th>
<th>End Uses</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azar and Menassa 2014</td>
<td>Natl; Office Bldgs; Elec & N.Gas</td>
<td>4</td>
<td>Thermostat setpoints, unoccupied equip use & lighting</td>
<td>HVAC, equipment, lighting</td>
<td>Technical, 21%</td>
</tr>
</tbody>
</table>

1. **CBECS DATA**
 - Commercial Buildings Energy Consumption Survey
 - Building Activities and Building Characteristics
 - Building Count per building type and census division
 - Building Area per building type and census division
 - Energy Intensity per building type and census division

2. **CENSUS DATA**
 - Population and demographic information

3. **LITERATURE REVIEW AND EXPERT INSIGHTS**
 - Technology Saturation
 - Energy consumption by end use and building type
 - Opportunities for energy savings by building type and energy end use

ESTIMATES OF ACHIEVABLE SAVINGS
from Occupant and Operator Behaviors
EHRHARDT-MARTINEZ 2015, 2016

<table>
<thead>
<tr>
<th>End Use</th>
<th>No. of Behaviors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Heating</td>
<td>15</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>10</td>
</tr>
<tr>
<td>Ventilation</td>
<td>5</td>
</tr>
<tr>
<td>Water Heating</td>
<td>8</td>
</tr>
<tr>
<td>Lighting</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>End Use</th>
<th>No. of Behaviors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooking</td>
<td>3</td>
</tr>
<tr>
<td>Refrigeration</td>
<td>11</td>
</tr>
<tr>
<td>Office Equipment</td>
<td>8</td>
</tr>
<tr>
<td>Computers</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>12</td>
</tr>
</tbody>
</table>

Behaviors

<table>
<thead>
<tr>
<th>Study</th>
<th>Scope</th>
<th>No. Types</th>
<th>End Uses</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehrhardt-Martinez 2015, 2016</td>
<td>5 U.S. cities; 9 bldg. types; Elec & N.Gas</td>
<td>A wide range: thermostat set points to computers</td>
<td>All</td>
<td>Achievable 7%</td>
</tr>
</tbody>
</table>

Method:
1. Extensive primary data collection and metering.
2. Determination of efficient technologies and behaviors for each end use.
3. Enhanced engineering analysis to assess energy usage and waste.

<table>
<thead>
<tr>
<th>Study</th>
<th>Scope</th>
<th>No.</th>
<th>Types</th>
<th>End Uses</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norton 2013</td>
<td>ComEd; C&I.; Elec.</td>
<td>16</td>
<td>Turn off, settings, maintenance, virtualization</td>
<td>Lighting, cooling, vent, motors, refrigeration, office equip.</td>
<td>Technical, 12-18%</td>
</tr>
</tbody>
</table>

Method: Estimate savings opportunity associated with particular types of behavioral interventions given the existing building stock and equipment stock. Representative programs modeled: building operator certification, lighting controls, building energy management systems, and tenant engagement.

<table>
<thead>
<tr>
<th>Study</th>
<th>Scope</th>
<th>No.</th>
<th>Types</th>
<th>End Uses</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wikler et al. 2016</td>
<td>CA IOUs; Most comm. bldgs.; Elec & N.Gas</td>
<td>?</td>
<td>Bldg. operations, lighting controls, tenant engagement</td>
<td>HVAC, lighting, equip., plug load</td>
<td>Achievable <1%</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1. Overview of the Studies

2. Comparisons and Insights

3. Take-Aways
LOOKING ACROSS STUDIES

<table>
<thead>
<tr>
<th>Study</th>
<th>Scope</th>
<th>No.</th>
<th>Types</th>
<th>End Uses</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azar and Menassa 2014</td>
<td>Natl; Office Bldgs; Elec & N.Gas</td>
<td>4</td>
<td>Thermostat setpoints, unoccupied equip use & lighting</td>
<td>HVAC, equipment, lighting</td>
<td>Tech 21%</td>
</tr>
<tr>
<td>Norton 2013</td>
<td>ComEd; C&I.; Elec.</td>
<td>16</td>
<td>Turn off, settings, maintenance, virtualization</td>
<td>Lights, cooling, vent., motors, refrig., off. equip.</td>
<td>Tech 12-18%</td>
</tr>
<tr>
<td>Ehrhardt-Martinez 2015, 2016</td>
<td>5 U.S. cities; 9 bldg. types; Elec & N.Gas</td>
<td>91</td>
<td>A wide range: thermostat set points to computers</td>
<td>All</td>
<td>Achiev. 7%</td>
</tr>
<tr>
<td>Wikler et al. 2016</td>
<td>CA IOUs; Most comm. bldgs.; Elec & N.Gas</td>
<td>?</td>
<td>Bldg. operations, lighting controls, tenant engagement</td>
<td>HVAC, lighting, equip., plug load</td>
<td>Achiev. <1%</td>
</tr>
</tbody>
</table>
INSIGHTS: OFFICES, EDUCATION, RETAIL ARE IMPORTANT

BB Energy Savings Potential by Building Type and City

Top 5 Building Types:
- Office
- Education
- Retail
- Healthcare
- Hotels/Lodging

Source: Ehrhardt-Martinez 2016
INSIGHTS: OFFICES, RETAIL, AND EDUCATION BUILDINGS REPRESENT A LOT OF THE BEHAVIOR-BASED OPPORTUNITY*

<table>
<thead>
<tr>
<th>Building Type</th>
<th>% of City-level Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offices</td>
<td>28%-33%</td>
</tr>
<tr>
<td>Education</td>
<td>22%-24%</td>
</tr>
<tr>
<td>Retail</td>
<td>16%-20%</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>68%-75%</td>
</tr>
<tr>
<td>Remaining 6 Building Types</td>
<td>25%-32%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Ehrhardt-Martinez 2016

*Of the 9 commercial building types included in the study.
INSIGHTS: LIGHTING, HVAC, AND COMPUTERS ARE GOOD TARGETS

BB Energy Savings Potential by End Use and City

Source: Ehrhardt-Martinez 2016
INSIGHTS: END USE SAVINGS POTENTIAL VARIES DRAMATICALLY BY BUILDING TYPE

BB Energy Savings Potential by End Use and Building Type

Source: Ehrhardt-Martinez 2016
Savings Estimates by Building Size and Vintage

- Large office <1980: 10%
- Large office >1980: 11%
- Medium office <1980: 19%
- Medium office >1980: 22%
- Small office <1980: 26%
- Small office >1980: 27%

Average savings across all U.S. Office Buildings = 21%

Source: Azar and Menassa 2014
INSIGHTS: HVAC-RELATED POTENTIAL IS THE LARGEST

HVAC Savings by End Use:
Large 5-15%
Medium 7.5-17%
Large 10-23%

Equipment Savings ≈ 5-15%
Lighting ≈ 2-3%

Source: Azar and Menassa 2014
INSIGHTS: BEHAVIOR AND TECHNOLOGY-BASED OPPORTUNITIES OVERLAP

Energy Use Classified in Baseline Study

- 21% Efficient Usage 61%
- 12% Shared Waste *
- 6% Behavioral Waste 12-18%
- Technological Waste 21-27%

*Either technology or behavior waste, depending on which is addressed first.

Source: Norton (Opinion Dynamics) 2013
BB Savings Ranking by End Use

<table>
<thead>
<tr>
<th>Study</th>
<th>HVAC</th>
<th>Lighting</th>
<th>Office Computers & Equip.</th>
<th>Hot Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azar & Menassa (offices) 2014</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>Norton (C&I) 2013</td>
<td>2</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Ehrhardt-Martinez (Comm.) 2015</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ehrhardt-Martinez (offices) 2015</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1. Overview of the Studies

2. Comparisons and Insights

3. Take-Aways
TAKE AWAYS

Technical BB Savings Potential =
• 21% in office buildings; 4 behaviors (Azar & Menassa 2014)
• 12-18% in C&I; 16 behaviors (Norton 2013)

Achievable BB Savings Potential =
• 7% in commercial buildings; up to 91 behaviors (Ehrhardt-Martinez 2015)
• 10% in office buildings; up to 91 behaviors (Ehrhardt-Martinez 2015)
• <1% in commercial buildings; 4 program interventions (Wikler 2016)

Variation is Size and Source of Savings:
• Savings estimates vary by building type, geography, size and vintage.
• Most important building types: offices, schools, retail – healthcare, lodging
• Most important end uses: vary by building type and geography.
REFERENCES

Wikler, Greg; Sathe, Amul; Swamy, Surya; Ehrhardt-Martinez, Karen; Daftari, Aayush; Oztreves, Semih; Pierce, Julie; Menon, Carishma; and Jack Cullen. 2016. “AB802 Technical Analysis: Potential Savings Analysis.” (Ref No.: 174655) Prepared for the California Public Utilities Commission.
DISCLAIMER

Notice Regarding Presentation
This presentation was prepared by Navigant Consulting, Inc. (Navigant) for informational purposes only. Navigant makes no claim to any government data and other data obtained from public sources found in this publication (whether or not the owners of such data are noted in this publication).

Navigant does not make any express or implied warranty or representation concerning the information contained in this presentation, or as to merchantability or fitness for a particular purpose or function. This presentation is incomplete without reference to, and should be viewed solely in conjunction with the oral briefing provided by Navigant. No part of it may be circulated, quoted, or reproduced for distribution without prior written approval from Navigant.
CONTACTS

KAREN EHRHARDT-MARTINEZ
Associate Director
303-942-1094
Karen.Ehrhardt.Martinez@Navigant.com