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Behavioral Energy Usage 
Segments Help Explain EE 
Program Savings Rates
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Opower’s Home Energy Report
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Opower’s Home Energy Report

Normative 
comparison
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Generates predictable and verified electricity savings
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Behavioral Demand Response product reduces peak 
usage, without a device or price
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Hourly data opens a window into how Matt lives

Wake up ~7am

Someone is often home 
during the day….

Most active 7-11pm 
(eat dinner ~9pm!)
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But, one day of data only tells us so much about a 
customer
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And every day isn’t exactly the same, so there’s a 
lot of noise in the data
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When we look at all customers, how do we make 
this meaningful?
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By finding signal in the noise

Smith et al 2012. A Simple Way to Use Interval Data to Segment Residential 
Customers for Energy Efficiency and Demand Response Program Targeting. ACEEE.
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AMI load archetypes allow us to segment 
customers by their behavior

Steady Eddies
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Evening Peakers
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Night Owls
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Twin Peaks
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Daytimers
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Knowing this enables us do better segmentation 
and targeting for programs

This is an alert from UtilityCo: 

Tomorrow, Wednesday, August 18th is a peak day. 
From  2:00 PM to 7:00 PM join UtilityCo customers 
by reducing your electric use. Simple ways to save 
on peak days include postponing dishwashing and 
other large appliance use until the peak day is over. 
Thank you for helping us save! 
To opt out of phone alerts, press 9. 
You may also reach us at 1-800-800-8000.

This is an alert from UtilityCo: 

Tomorrow, Wednesday, August 18th is a peak day. 
From  2:00 PM to 7:00 PM join UtilityCo customers 
by reducing your electric use. Simple ways to save 
on peak days include postponing dishwashing and 
other large appliance use until the peak day is over. 
Thank you for helping us save! 
To opt out of phone alerts, press 9. 
You may also reach us at 1-800-800-8000.
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Knowing this enables us do better segmentation 
and targeting for programs

BDR Peak Reduction % by Archetype

Average peak savings results normalized by average energy usage
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What types of customers save the most?

Energy savings by income Energy savings by age Energy savings by # of residents

50-75k25-50k0-25k >100k75-100k 40-4930-3918-29 60+50-59 321 >4

Demographics and household characteristics
do not predict EE savings
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To date, the only factor predictive of savings has 
been how much energy customers use

High users Average users Low users

Energy savings % by energy usage
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…but, surprisingly, load profile archetypes 
also predict savings

EE Savings % by Archetype

Average savings results normalized by average energy usage
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WHY do customers with different archetypes save at 
different rates?

23

• Surveyed 600 AMI customers at one utility to investigate 
behavioral motivations

• Applied the Theory of Planned Behavior
– What beliefs do customers hold about energy efficiency that could motivate 

intention to save energy?
• Norms

• Control

• Habits

• Attitudes

– Do customers intend to modify their behavior to save energy?
• Self-reported intention to save energy
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Behaviors

It's up to me whether I do things like that

It’s hard to do things like that when I’m busy

Perceived 
control

I do things like that without thinking

Things like that are part of my routine

Habits

It would make me feel good to do things like that

It's smart to do things like that
Attitudes

Norms
My family and friends do things like that

Most people think it's good to do things like that

Intentions

Theory of Planned Behavior Model
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Which customer attribute is most strongly correlated 
with energy savings beliefs and intentions?

25

• Demographic characteristics
– Education

– Income

• Household characteristics
– Living square footage

– Heat type

– AC type

• Program participation
– Receives Opower Home Energy 

Reports

• Energy Usage
– Average annual usage

– Average winter usage

– Load Profile Archetype 
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Savings rate from HERs

Steady Eddies Daytimers

Survey responses and energy savings tell a coherent story

Means in both charts adjusted for covariates
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Survey responses by Load Profile Archetype
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Could we boost energy savings by tailoring messaging to 
behavioral segments?

28

• Option 1: Segment based on behavioral survey responses
– PRO: Precise, customer-level knowledge of attitudes

– CON: Prohibitively expensive to measure directly
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Could we boost energy savings by tailoring messaging to 
behavioral segments?

29

• Option 1: Segment based on behavioral survey responses
– PRO: Precise, customer-level knowledge of attitudes

– CON: Prohibitively expensive to measure directly

• Option 2: Segment based on Load Profile Archetypes
– PRO: Inexpensive to calculate for AMI customers 

– CON: Blunt tool aimed at attitudes by proxy 
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Daytimers

Perceived 
control

Habits

Attitudes

Norms

Intentions
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Daytimers

Perceived 
control

Habits

Attitudes

Norms

Intentions

-0.185

-0.065

0.461**

0.587**

• For Daytimers, strong Habits and Attitudes are most 
predictive of intention to save

• Could Daytimers’ strong 2.0% EE savings rate be 
boosted further by sending messaging tailored to 
these dimensions?
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Daytimers • For Daytimers, strong Habits and Attitudes are most 
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Daytimers • For Daytimers, strong Habits and Attitudes are most 
predictive of intention to save

• Could Daytimers’ strong 2.0% EE savings rate be 
boosted further by sending messaging tailored to 
Attitudes?
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Steady Eddies

Perceived 
control

Habits

Attitudes

Norms

Intentions

0.065

0.221**

0.354**

0.378**

• For Steady Eddies, Perceived Control is also 
predictive of intention to save

• Could Steady Eddies’ lower 1.4% EE savings rate be 
boosted further by sending messaging tailored to 
Control?
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Steady Eddies • For Steady Eddies, Perceived Control is also 
predictive of intention to save

• Could Steady Eddies’ lower 1.4% EE savings rate be 
boosted further by sending messaging tailored to 
Control?
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Open question: What does this relationship tell us about 
energy savings behavior?

36

• What is the causal relationship between customers’ beliefs about EE, 
what time of day they use energy, and EE savings?
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37

• What is the causal relationship between customers’ beliefs about EE, 
what time of day they use energy, and EE savings?

Energy usage
pattern

Energy usage
pattern

Beliefs related 
to energy 

savings

Beliefs related 
to energy 

savings

EE savings 
behavior

EE savings 
behavior
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• What is the causal relationship between customers’ beliefs about EE, 
what time of day they use energy, and EE savings?
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Thank you

40

• Matt Frades
– matt.frades@oracle.com

• Oren Benjamin
– oren.yeshua@oracle.com

• Allison Waters
– ally.waters@duke.edu


