ASSOCIATION FOR ENERGY AFFORDABILITY

Meghan Duff, Energy Analyst II mduff@aea.us.org | (510) 431-1795

What is Building Electrification?

Electrification - replacing direct fossil fuel use (e.g., propane, heating oil, gasoline) with electricity [use] in a way that reduces overall emissions and potentially energy costs while lowering other air pollutants. (Source: <u>New Buildings Institute</u> via <u>Environmental and Energy Study Institute</u>)

Left Image: Sanden, Rheem heat pump water heater Right Image: Mitsubishi ductless mini split heat pump (<u>https://www.acwholesalers.com/Mitsubishi</u>)

- All common gas appliances have an electric counterpart that is safer and more efficient than the gas option.
- Electric heat pumps can be used in space heating and cooling, domestic hot water heating, clothes drying, and pool heating.
- Heat pumps are 3-5 times more efficient than comparable gas equipment.
- Instead of using combustion to *create* heat, a heat pump *moves* heat from one place to another by compressing and expanding refrigerant.

Why Electrify?

Building electrification is important because:

- Create Safer and healthier buildings
- Reduces greenhouse gas emissions and air quality degradation
- Results in potential cost stabilization and savings

More broadly, building stock electrification is a critical pathway to achieve statewide climate goals to help avoid the worst-case scenario impacts of Climate Change.

- The electricity grid in CA is getting cleaner—100% carbon-free electricity by 2045 (SB 100, 2019)
- The cost of maintaining gas infrastructure will fall on fewer and fewer
- customers and therefore become a greater and greater cost burden

Building Electrification Lessons from Affordable Multifamily Housing

	How to Electrify Your B
<u>1. Design: How to Do It</u>	2. Value Proposition: Getting
What are the design considerations pre-construction or -retrofit that lead to suc-cessful building electrification?	What is the value proposition to owners?
 It is not that different! 1. Early in design 2. Confirm enough electrical capacity 3. Reduce load 4. Analyze electricity rates 5. Optimize with renewables 	 Cost-effective 1. Electricity can be offset by 2. Eliminate gas infrastructure and service costs, and 3. Buildings are always going electricity Health and Safety Long-term maintenance

Results: Show Me the Data

Cost Impact

- Cost savings follow similar curve as energy savings (see left) — property is on small commercial electric rate (SMUD - GNS_T) and had pre-existing solar PV
- Energy savings of 64% (89% gas, -33% electric)
- Cost Savings of 36% (90% gas, -25% electric)

- Property Information
- Located in Sacramento, CA; built in 1960
- 36 units, 36,944 sq. ft.
- Central DHW (switched from gas to heat pumps)
- Unitary HVAC (gas furnace & AC) energy use not included in graph (graph is common area data only)
- Energy savings of 64% (89% gas, -33% electric)

How to Flectrify Your Building?

or bonding:	
tting to Yes!	3. Installation Considerations: How to
	<u>Achieve Success</u>
on to building	What is needed to ensure contractor en- gagement and successful installation?
et by renewables ucture, infrastruc- , and upkeep going to have	 Correct sizing and settings
	 Familiarity with equipment
	 Sizing for thermal storage and load shift- ing/demand response
	 Re-piping or wiring, and need for more electrical capacity
	 Changes to familiar O&M and training de-

• Engagement is key!

livery

Promote Health and Safety

- Fossil fuel-powered appliances use combustion to run and emit Carbon Monoxide (CO) and Nitrous Oxide (NOx).
- Heating, water heating, laundry, and cooking are all large in-home end uses that can endanger users when fueled with gas.
 - \Rightarrow Incomplete combustion can give off Carbon Monoxide and become lifethreatening.
 - \Rightarrow Release gases and particulates that degrade air quality
 - \Rightarrow Threat of leaking gas lines, unsafe for the homeowner and the environment

Created By: Jessica Russo, NRDC

It is **imperative** that we electrify our building stock both new construction and retrofit—to achieve our climate goals.

Case Study: Edwina Benner Plaza

Conclusion: It Works

Electrification is already being done in Affordable Multifamily, both new construction and retrofit. It is tangible and achievable!

Source: E3, Pathways to 2050: Decarbonization in a High Renewables Future (presentation), April 2019.