Behavior-Based Energy Efficiency: A Case Study of the Oakland EcoBlock

Jared Langevin, Jingjing Zhang, Handi Chandra Putra
Lawrence Berkeley National Laboratory

For The Behavior Energy and Climate Change Conference 2021
Overview of EcoBlock

• The Oakland EcoBlock is a whole-systems urban sustainability project that aims to prototype a pathway to affordable urban decarbonization by means of block-scale retrofitting.

• The primary research questions are:
 • What technology attributes are most strongly associated with energy efficient and/or flexible equipment purchasing decisions in the EcoBlock resident sample?
 • What are typical patterns of energy-related equipment operation in the EcoBlock resident sample, and which variables (e.g., demographic, environmental, other) are most strongly associated with these typical operational patterns?
 • How might the EcoBlock resident sample respond to disruptions to typical operating patterns (e.g., during a demand response event or similar), and which variables are most strongly associated with these responses?

https://ecoblock.berkeley.edu/
Insights from literature review

Knowledge gaps

- Decision making context that impact the home energy upgrades among low-income households are particularly lacking.
- Residential occupants tend to have high degree of influence over operational schedules and settings; These patterns vary among populations and are especially prominent during the pandemic.

Key variables influencing home energy upgrade decisions and operations

<table>
<thead>
<tr>
<th>Category</th>
<th>Personal</th>
<th>Contextual (long-term)</th>
<th>Contextual (short-term)</th>
<th>Operational patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors influencing technological choices</td>
<td>Socio-demographics</td>
<td>Ownership structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Habits & lifestyle</td>
<td>Social network & ties to community</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge & information access</td>
<td>Building characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attitudes & perceptions</td>
<td>Economic and policy environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financial resources & transaction costs</td>
<td>Culture & social norms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factors influencing technological operations</td>
<td>Socio-demographics</td>
<td>Physical surroundings (e.g. installed equipment and construction)</td>
<td>Time of day/week</td>
<td>Under normal conditions</td>
</tr>
<tr>
<td></td>
<td>Degree of familiarity with building retrofit technologies</td>
<td>Social influences (e.g. friends and neighbors)</td>
<td>Physical conditions</td>
<td>Under atypical conditions (e.g. demand response event)</td>
</tr>
<tr>
<td></td>
<td>Pro-environmental attitudes</td>
<td></td>
<td>Economic signals (e.g. price and incentives)</td>
<td></td>
</tr>
</tbody>
</table>
Overview of choice survey

• **Goal**: To understand household energy upgrade decisions. The survey asks about what residents do or purchase to improve the function and comfort of their homes.

• **Survey length**: 15-20 mins

• **Distributions**
 • Online and in person in the summer of 2021 (Sep/Oct in the bay area)

• **Survey content**
 • General Information
 • Ownership; Gender; Education; Income; Household size, etc
 • Participant and Building information
 • Building types; Vintage; Sizes; Energy bill; Who pays the bill; Energy types, etc
 • General Purchasing Information, Motivations and Barriers
 • Who makes purchase decision; Reasons, barriers, and budget available for home energy upgrade decisions
 • Knowledge and Information Channels
 • Familiarity with home energy upgrade measures; Where did they learn about the measures, including public & utility programs, and social networks.
 • Perceptions of Energy Efficient Improvements
 • How do they view different home energy upgrade measures; How likely they would purchase/install the measures; How much do they think it will cost; The extent of impacts do they perceive (i.e., improved comfort, reduced costs, increased home value, and feedback from friends and family)? How do they view the burden of installation and operation?
Overview of operational behavior survey

- **Goal**: To understand household energy use patterns. The survey asks questions about energy-related equipment and appliances and how they are being used over the past few weeks.

- **Survey length**: 15-20 mins

- **Distributions**: Online over two seasons.
 - Online and in person in the Summer of 2021 and Winter of 2022

- **Survey content**:
 - Participants and building information
 - Ownership; gender; health; HVAC type; windows and shading type, etc
 - Upgrades and maintenance
 - Purchase/replacement schedule
 - Occupancy
 - Weekdays and weekend schedule
 - Satisfaction levels
 - Temperature; humidity; lighting; IAQ; noise; general quality
 - Energy-related actions
 - Thermostat; lights; fans; window A/C; windows; blinds; air purifier; dehumidifier; notify landlord
Survey distribution

- **Choice survey released on July 27, 2021**
 - Virtual recruitments via email list & newsletter
 - In-person community outreach
 - Target for 35 responses (one response per household required); Received 13 responses by Sep 20

- **Upcoming surveys**
 - Operational survey: Summer 2021 (Sep/Oct in the Bay area)
 - Operational survey: Winter 2022
 - Target for 48 responses for each survey

- **Survey Incentives**
 - $25 Visa gift card (virtual)

- **Challenges for recruitments**
 - Low responses via virtual recruitment alone
 - Collecting digital consent forms are particularly challenging among this population, which requires access to printers or professional Adobe Acrobat Reader
Thank you for your attention!

Jared Langevin jared.langevin@lbl.gov
Jingjing Zhang jingjingzhang@lbl.gov
Handi Chandra Putra hchandraputra@lbl.gov