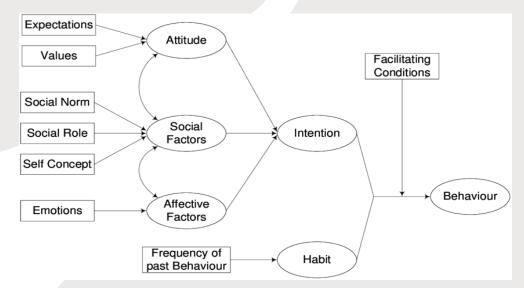

WHAT ARE THE CRITICAL DETERMINANTS OF PRO-ENVIRONMENTAL BEHAVIOR?

A Meta-Analysis looking at the Theory of Planned Behavior, Value Belief Norm Theory, Affect, Habit and Self-Identity

Within Environmental Psychology there exists presently a myriad of different models which purport to have distilled the key drivers of human pro-environmental behaviour. These span the gamut from relatively parsimonious models such as 'The Theory of Reasoned Action,' within which behaviour is governed by a subject's attitudes and subjective norms, to more complex integrated models such as 'Triandis' Theory of Interpersonal Behaviour2' in which behaviour is the result of a web of congruent and competing motivations, emotions and habits. The research presented here uses a meta-analysis methodology to examine the correlations between the predicted antecedents of human behaviour from across a range of models, with either intentions to perform a pro-environmental action or self-reported proenvironmental behaviour.

Research by: Abigail Bender, Victoria University of Wellington, email: benderab@staff.vuw.ac.nz

This research has been conducted to elucidate which key antecedent variables are most positively correlated with different pro-environmental actions. The research is novel in that it pulls predictor variables from across a range of different behavioural models and examines them in parallel.


The pro-environmental actions have been broken down into the key domains of energy, transport, food, consumption, and waste. This has been done to determine whether different predictor variables are relevant for different actions across these heterogeneous sectors of daily life.

Additionally, studies included in the meta-analysis have been categorised according to whether they evaluated participants intentions to engage in a particular action, or their self-reported behaviour. This has been done to investigate whether intentions or self-reported behaviours are more positively correlated with the examined predictor variables.

THEORIES AND VARIABLES

The multiple theories from which predictor variables have been taken provide a comprehensive depiction of the key avenues of research into patterns of pro-environmental behaviour within environmental psychology. Some theories, such as 'Self-Perception Theory' have not been included in this research, as the predictor variables were either sub-conscious or not amenable to assessment using a survey methodology, and thus incompatible with the meta-analysis approach used to calculate effect sizes in this research. Terms in bold are the predictor variables included in this research.

The Theory of Planned Behaviour₃: **Behavioural Beliefs** (these differed between domains and were categorised accordingly, sometimes they included beliefs about the environmental benefit of a behaviour, sometimes they were in regard to the health aspects of a dietary choice); **Attitudes**; **Subjective norms** (in accordance with Cialdini's Theory of Normative Conduct₄, these were categorised as either injunctive or descriptive); **Perceived Behavioural control** (this was supplemented with measures from the consumption/marketing literature regarding **perceived ease of use**, and **perceived consumer effectiveness**; and finally **Intention**.

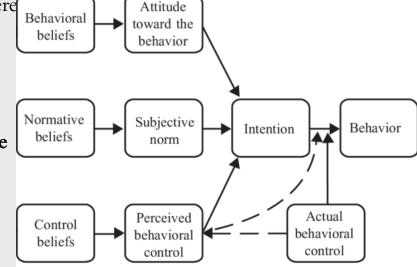


Image Sourced from: https://www.researchgate.net/figure/The-theories-of-reasoned-action-and-planned-behavior_fig3_264000974

Affect and Habit: The Theory of Reasoned Action is supplemented in Triandis's Theory of Interpersonal Behaviour⁵ with Affective and Habitual predictors. This meta-analysis included two measures for Habit: **Self-reported Past behaviour**, and a **Habit specific variable** (most commonly measured within studies using the self-reported habits index). It also included measures of positive and negative anticipated affect.

Image Sourced from: https://www.researchgate.net/figure/The-Theory-of-Interpersonal-Behaviour_fig1_258125656

Value Belief Norm₆: Stern's Value Belief Norm theory is similar to Triandis's theory in that it is a composite of multiple behavioural theories. Within the Value Belief Norm model, Schwarts's Norm Activation Theory (which includes measures for **Awareness of Consequences, Ascription of Responsibility and Personal Norms**) is combined with variables that capture and individuals' values (**Biospheric, Altruistic and/ or Egoistic**) and beliefs about the environment (measured using the **New Ecological Paradigm**). Additionally, within this meta-analysis a variable measuring **Environmental Concern** was included. This was often used in studies as synonymous with the NEP (and vice versa), however the questionnaire items used to measure the two were distinct.

THEORIES AND VARIABLES

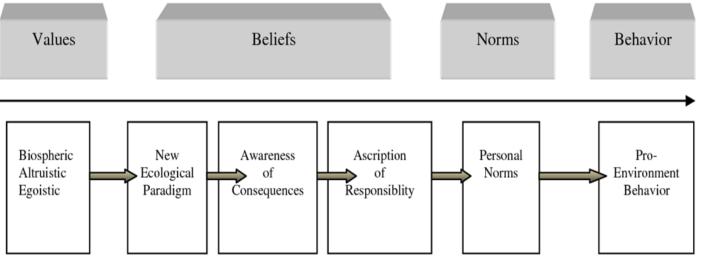


Image Sourced from: https://www.semanticscholar.org/paper/Predictors-of-Turkish-Elementary-Teacher-Energy-An-%C5%9Eahin/5702f9889b8b8072ab2e8474c00be54ef7d865ad

Identity: Slightly more idiosyncratic are the behavioural theories that posit a connection between identity and behaviour or intentions. For example, in Higgins's Selfdiscrepancy Theory⁷ individuals' are motivated to act in alignment with their internalised beliefs about their own identity to avoid uncomfortable cognitive dissonance. In this research two predictors were included pertaining to an individual's self-reported general '**Pro-environmental Identity**' or specific '**Behaviour Based Identity**' (e.g. recycling/energy conservation/Vegetarianism is an important part of my identity).

Summary of Variables: Beliefs, Attitudes, Injunctive and Descriptive Norms, Perceived Behavioural Control, Perceived Ease of Use, Perceived Consumer Effectiveness, Intention, Past Behaviour, Habit, Positive Anticipated Affect, Negative Anticipated Affect, Awareness of Consequences, Ascription of Responsibility, Personal Norm, Biospheric Values, Altruistic Values, Egoistic Values, New Ecological Paradigm, Environmental Concern, Pro-environmental Identity, Behaviour Based Identity.

META-ANALYSIS

• DATABASE: Web of Science(Primary), Google Scholar (Supplementary: used for searching for papers cited within selected studies)

• SEARCH TERMS:

Theory names used: Theory of Reasoned Action; Theory of Planned Behaviour; Habit; Past Behaviour; Affect; Norm Activation Model; Value Belief Norm; Ecological Values Theory; Schwartz Values; Self-identity

Theory Name (capitalised) AND: General: ecological behaviour; pro-environmental behaviour; environmentally friendly behaviour; environmental protection; environmental problems. Energy: energy saving; energy conservation; green energy; renewable energy; energy efficiency. Food: food waste; eat local; plant-based diet; meat consumption. Transport: travel mode choice; travel behaviour; car use; bus use; public transportation; cycling; walking; travel demand; car free; air travel; flight. Consumption and waste: Recycling; waste reduction; ethical consumer; environmental consumer; ecological consumer; sustainable consumption; green consumer; reduce consumption

- NUMBER OF PAPERS: Search returned over 15,000 studies. Refined by title and abstract: 2,167 After Applying Inclusion Criteria: 373
- INCLUSION CRITERIA: Studies were included that employed a survey methodology to evaluate participants scores on any of the assessed predictor variables and reported the correlations between these scores and either participants self-reported intentions or pro-environmental behaviours. In addition, studies were included only if they also reported the sample size and used **appropriate questionnaire items** for measuring the variable of interest*. Questionnaire Items were also checked to ensure these showed high construct validity.
- INFORMATION EXTRACTED: In addition to the correlational information extracted from each study, data on the location, the gender balance and the date of the study was obtained. This enabled the use of meta-regression to evaluate the potential impact of these variables on the obtained effect sizes.
- SOFTWARE: Separate meta-analyses were run for each of the assessed predictor variables within each domain. The meta-analyses were run in RStudio using the 'meta' package metacor function. Random rather than fixed effects models were used due to the levels of heterogeneity found between studies. Influence and Outlier analyses were conducted using the find.outliers function in the 'dmetar' package, and the InflunceAnalysis function from the 'meta' package, and these were used to determine if any studies should be excluded. In addition separate meta-regressions were run to evaluate the impact of: location, year or publication and proportion of male participants on the effect size of each meta-analysis (not reported here).

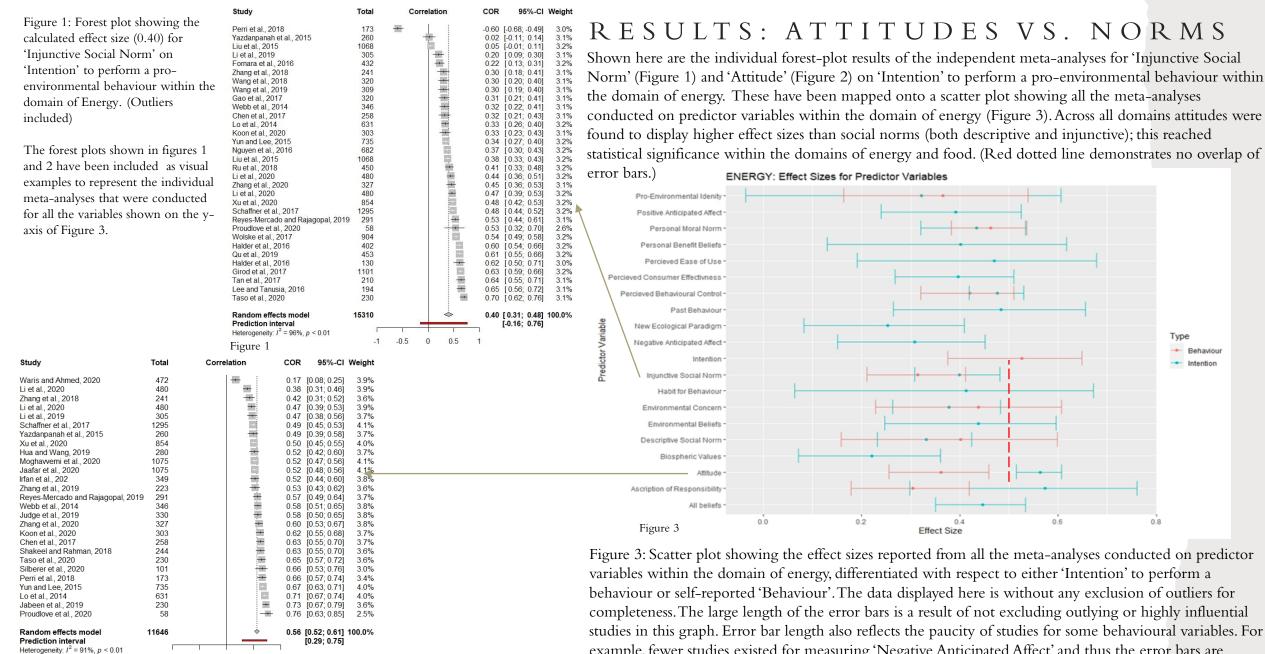


Figure 2: Forest plot showing the calculated effect size (0.56) for 'Attitude' on 'Intention' to perform a pro-environmental behaviour within the domain of Energy. (Outliers included)

1

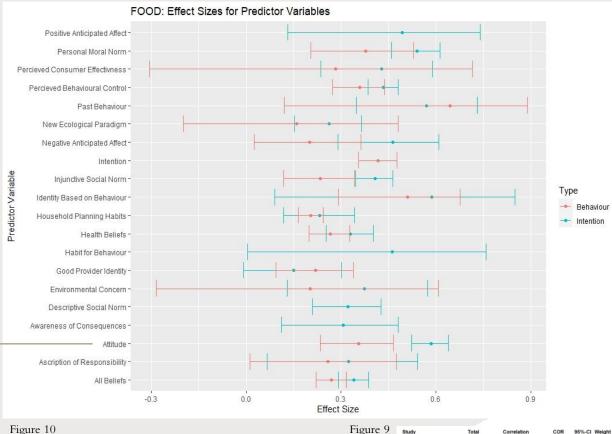
0.5

-0.5

0

-1

Figure 2


example, fewer studies existed for measuring 'Negative Anticipated Affect' and thus the error bars are significantly wider for this variable in comparison with a more highly studied variable such as 'Attitude'. The effect sizes for attitude were greater than for other variables, including norms, beliefs and values, however as indicated by the length of the error bars this often did not reach significance.

R E S U I N T E B E H A	ΝT	IONS	VS.		Study Heidari et al., 2020 Schmidt, 2019 Lorenz et al., 2017 Lorenz et al., 2018 Gham;etter al., 2018 Chen, 2020 Russell et al., 2017 Kim et al., 2019 Barone et al., 2020 Wong et al., 2018 Woo and Kim, 2019	Total 379 331 156 307 260 745 172 978 163 329 539 253	Correlation	0.23 0.27 0.32 0.34 0.36 0.38 0.39 0.47 0.48	95%-CI [0.08; 0.27] [0.13; 0.33] [0.08; 0.38] [0.17; 0.38] [0.27; 0.40] [0.22; 0.43] [0.32; 0.43] [0.32; 0.43] [0.32; 0.55] [0.41; 0.54] [0.39; 0.58]	Weight 2.7% 2.6% 2.5% 2.6% 2.7% 2.5% 2.5% 2.5% 2.6% 2.6% 2.6%	
Study 6 4 18 10 9 1 14 3 5 8 11 2 7 19 13 12 15 16 17 Random effects mode Prediction interval Heterogeneity: I ² = 97%,		Correlation	0.01 [-0.11; 0.13] 0.03 [-0.13; 0.19] 0.06 [-0.06; 0.17] 0.10 [-0.01; 0.20] 0.11 [-0.02; 0.24] 0.17 [-0.02; 0.31] 0.20 [-0.07; 0.32] 0.27 [-0.21; 0.32] 0.29 [-0.17; 0.40] 0.29 [-0.18; 0.40] 0.45 [-0.34; 0.55] 0.52 [-0.37; 0.64] 0.55 [-0.52; 0.57] 0.55 [-0.49; 0.61] 0.60 [-0.56; 0.64] 0.77 [-0.74; 0.80] 0.35 [-0.23; 0.47] [-0.21; 0.74]	Weight 5.3% 5.1% 5.3% 5.2% 5.1% 5.2% 5.1% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2	Kim and Hal, 2019 Stancu et al., 2016 Ehoustry, 2020 Chen, 2020 Chen, 2020 Contini et al., 2020 Weber et al., 2020 Weber et al., 2020 Chen et al., 2011 Carfora et al., 2011 Carfora et al., 2011 Carfora et al., 2017 Zur and Klöckner, 2014 Li et al., 2020 Wermeir and Verbeke, 2008 Dowd and Burke, 2013 Jang et al., 2015 Coker and Van der Linden, 2020 Graham-Rowe et al., 2015 Gi and Ploeger, 2019 Reid et al., 2018 Krisperz and Bertrams, 2020 Graham and Abrahamse, 2017 Graham and Abrahamse, 2017 Graham and Abrahamse, 2017 Graham and Abrahamse, 2017 Graham and Abrahamse, 2017 Rese et al., 2018 Choe et al., 2020 Random effects model Prediction interval Heterogeneity, I ² = 97%, p < 0.01	376 1062 609 775 600 270 255 233 765 100 348 210 850 137 347 808 256 279 300 456 137 347 808 8256 279 300 434 848 412 439 18985		0.50 0.51 0.52 0.54 0.55 0.55 0.55 0.57 0.61 0.64 0.66 0.67 0.68 0.68 0.68 0.68 0.68 0.71 0.72 0.72 0.77 0.77 0.77 0.77 0.77 0.80 0.80 1.90 0.81 0.84 0.84 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85		$\begin{array}{c} 2.7\% \\ 2.7\% \\ 2.7\% \\ 2.7\% \\ 2.7\% \\ 2.6\% \\ 2.7\% \\ 2.7\% \\ 2.7\% \end{array}$	
Figure 6		0.0			Figure 7						

Figure 6 ('Self-reported Behaviour') and Figure 7 ('Intention' to perform a behaviour): Forest plots showing the calculated effect sizes for 'Attitude' on either 'Intention' to perform a pro-environmental behaviour or 'Selfreported Pro-environmental Behaviour' within the domain of Food. Across almost all predictor variables intentions showed higher effect sizes than behaviour. (Outliers included)

Figure 10: Scatter plot showing the effect sizes reported from all the meta-analyses conducted on predictor variables within the domain of food, differentiated with respect to either intention to perform a behaviour or self-reported behaviour. The data shown here is without any exclusion of outliers for completeness. Different domains had greater or fewer studies reporting different variables; for example, within the domain of food health beliefs were relevant and more studies reported these in comparison to environmental beliefs. Across predictor variables intention to perform a behaviour demonstrated higher effect sizes, however again this often did not reach significance.

> Figure 8 ('Self-reported Behaviour') and Figure 9 ('Intention' to perform a behaviour): Forest plots showing calculated effect sizes for 'Attitude' on either 'Intention' to perform a pro-environmental behaviour or 'Selfreported Pro-environmental Behaviour' within the domain of Transport. Demonstrating the finding that intentions displayed higher effect sizes than behaviour across domains. (Outliers Included).

					Fig	gure 9	Study	Total	Correlation	COR	95%-CI	Weight
	Figure 8						Wang et al., 2016 Carrus et al., 2008 Murtagh et al., 2012 Tu and Yang, 2019	433 180 167 300	***	0.26 0.35 0.36	[0.13; 0.31] [0.12; 0.39] [0.21; 0.48] [0.26; 0.46]	2.3% 2.2% 2.4%
	Study	Total	Correlation	COR	95%-C	Weight	Bachmann et al., 2018 Mann and Abraham, 2012 Han et al., 2017	342 229 394	****	0.43	[0.33, 0.50] [0.32, 0.53] [0.35, 0.51]	2.3%
	Bachmann et al., 2018 Bamberg et al., 2007 Zhang et al., 2020a Murtagh et al., 2020b Carrus et al., 2020b Carrus et al., 2010 Carrus et al., 2010 Ornwezen et al., 2010 Ambak et al., 2010 Mang and Han, 2016 Passafaro et al., 2010 Morten et al., 2010 Bamberg et al., 2003 Frater et al., 2010 Bratin et al., 2000 Donald et al., 2014 Caballero et al., 2014 Caballero et al., 2019 Heath and Gifford. 2002	342 796 547 167 297 180 193 617 282 394 387 194 1874 792 317 317 229 705 5827 172 229	· 四時期末月10日本市10日本市市市市市市市市市市	0.12 0.12 0.15 0.16 0.17 0.25 0.27 0.29 0.30 0.34 0.34 0.38 0.38 0.39 0.41 0.42	$\begin{bmatrix} 0.01; 0.20;\\ 0.05; 0.19;\\ 0.04; 0.20;\\ 0.05; 0.19;\\ 0.04; 0.20;\\ 0.05; 0.27;\\ 0.05; 0.27;\\ 0.05; 0.27;\\ 0.05; 0.27;\\ 0.05; 0.27;\\ 0.05; 0.27;\\ 0.05; 0.27;\\ 0.05; 0.27;\\ 0.05; 0.27;\\ 0.05; 0.25;\\ 0.05;\\$	3.9% 3.8% 3.8% 3.7% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.4% 3.3% 4.1 3.9% 4.1 3.9% 4.1 3.9% 4.1 3.9% 4.1 3.9% 4.1 3.9%	Omnosan of al. 2013 Si et al. 2020 Lue et al. 2017 Mang and Han, 2016 Donaid et al., 2014 Chen and Chao, 2011 Ambai et al., 2014 Chen and Chao, 2011 Ambai et al., 2016 Barners and Mattisson, 2017 Zhang et al., 2020a Barnereg et al., 2020a Rue et al., 2020a Rue et al., 2016 Bratam et al., 2017 Frater et al., 2017 Zalian et al., 2017 Zalian et al., 2016 Zalian et al., 2016	334 617 705 600 394 827 442 282 297 115 547 1874 278 338 317 419 278 317 523 317 523 317 523 290 300 300 201 290 300 201 290 300 201 290 200 201 297 290 200 201 200 201 200 200 201 200 200 20	11年末年春日日本年年4日日年年年1日日年1月	$\begin{array}{c} 0.43\\ 0.44\\ 0.44\\ 0.45\\ 0.46\\ 0.47\\ 0.47\\ 0.47\\ 0.47\\ 0.47\\ 0.48\\ 0.52\\ 0.53\\ 0.53\\ 0.55\\ 0.57\\ 0.58\\ 0.58\\ 0.59\\ 0.60\\ \end{array}$	$\begin{array}{c} [0.36], 0.48], (0.36], 0.49], (0.36], 0.49], (0.37], 0.50], (0.57], 0.52], (0.57], (0$	$\begin{array}{c} 2.5\%\%\\ 2.55\%\%\\ 2.55\%\%\\ 3.255\%\%\\ 3.2554\%\%\\ 3.25244\%\%\\ 3.25244\%\%\\ 3.25244\%\%\\ 3.2244\%\%\\ 3.45\%\%\\ 3.2244\%\%\\ 3.5\%\%\\ 3.2244\%\%\\ 3.5\%\%$
g the f-	Mang and Han, 2016 Gardner and Abraham, 2010 Noblet et al., 2014 Zailani et al., 2016 Xin et al., 2019 Bamberg et al., 2007 Xu et al., 2019a	394 190 1340 392 211 796 382		0.44 0.46 0.47 0.50 0.54 0.55 0.70	[0.36; 0.52] [0.34; 0.57] [0.43; 0.51] [0.43; 0.58] [0.43; 0.58] [0.44; 0.63] [0.50; 0.60] [0.65; 0.75]	2] 3.7% 7] 3.5% 1] 4.0% 3] 3.7% 3] 3.5% 0] 3.9% 5] 3.7%	Policarpo and Aguar, 2020 Zhang et al., 2019 Cabaliero et al., 2019 Han et al., 2020 Thogersen and Ebsen, 2019 Heath and Gifford, 2002 Morten et al., 2018 Huang and Ge, 2019 Bamberg et al., 2007 Yuriev et al., 2019	870 193 172 302 238 387 194 204 796 318 309	00000000000000000000000000000000000000	0.64 0.67 0.68 0.69 0.71 0.73 0.76 0.83	[0.56, 0.66] [0.55, 0.72] [0.54, 0.72] [0.60, 0.72] [0.63, 0.74] [0.63, 0.74] [0.63, 0.77] [0.66, 0.79] [0.79, 0.86] [0.79, 0.86]	2.3% 2.2% 2.4% 2.3% 2.3% 2.3% 2.3% 2.5% 2.5% 2.4%
-	Random effects model Prediction interval Heterogeneity: $J^2 = 93\%$, $p < 0.0$		-0.5 0 0.5		[0.29; 0.42] [0.00; 0.63]		Random effects model Prediction interval Heterogeneity: I ² = 94%, p < 0.0	18421 01 -1	-0.5 0 0.5		[0.50; 0.60] [0.18; 0.78]	

DISCUSSION

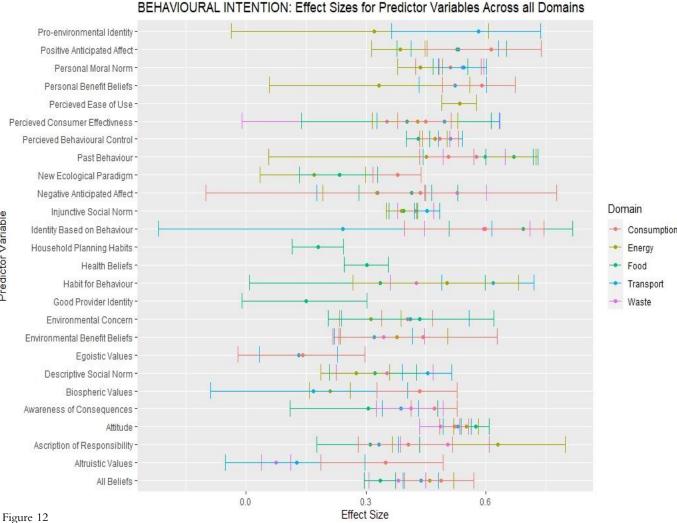


Figure 12: Scatter plot showing the effect sizes reported from all the meta-analyses conducted on predictor variables across the domains of: consumption, energy, food, transport and waste. Looking only at intention to perform a behaviour. The data shown here is with the exclusion of outlying studies.

The results of the meta-analyses have demonstrated that across domains effect sizes are greater for intention to perform a proenvironmental behaviour than for self-reported substantive behaviours. Additionally, across domains attitudes consistently demonstrated higher effect sizes than other variables such as beliefs, values and norms, however these reported differences did not always reach statistical significance(see Figure 12).

The inability to reach statistical significance when attempting to distinguish between the effect sizes for different predictor variables may be due in part to the lack of 'best practice' guidelines with respect to the design of questionnaire constructs used to measure different variables. Despite the careful coding of questionnaire items used to measure variables in this investigation, it was impossible to ensure a variable was measured in the same way across all studies. Additionally, variables such as attitudes, beliefs and values commonly included similar question items (often measuring something akin to environmental concern), creating a blurring of the distinction in the definition of these concepts across studies.

Additionally, the large error bars for some variables are in part due to the small number of investigations that have looked at certain variables, creating a low sample size of individual studies. Thus, investigations into the impacts of variables such as affect and identity on pro-environmental behaviour would be productive avenues for future environmental behaviour research.